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Abstract—The algorithmic Markov condition states that the
most likely causal direction between two random variables X and
Y can be identified as the direction with the lowest Kolmogorov
complexity. This notion is very powerful as it can detect any
causal dependency that can be explained by a physical process.
However, due to the halting problem, it is also not computable.

In this paper we propose an computable instantiation that
provably maintains the key aspects of the ideal. We propose to ap-
proximate Kolmogorov complexity via the Minimum Description
Length (MDL) principle, using a score that is mini-max optimal
with regard to the model class under consideration. This means
that even in an adversarial setting, the score degrades gracefully,
and we are still maximally able to detect dependencies between
the marginal and the conditional distribution.

As a proof of concept, we propose CISC, a linear-time algo-
rithm for causal inference by stochastic complexity, for pairs
of univariate discrete variables. Experiments show that CISC is
highly accurate on synthetic, benchmark, as well as real-world
data, outperforming the state of the art by a margin, and scales
extremely well with regard to sample and domain sizes.

Index Terms—causal inference; MDL; discrete data

I. INTRODUCTION

Causal inference from data that was not collected through
carefully controlled randomised trials is a fundamental prob-
lem in both business and science [23], [15]. A particularly
interesting setting is to tell cause from effect between a
pair of random variables X and Y , given data over the
joint distribution. That is, to identify which of the Markov
equivalent cases X → Y or Y → X is the most likely.

In recent years, a number of ideas have been proposed for
causal inference based on properties of the joint distribution.
These ideas include the Additive Noise Model (ANM), where
we assume the effect is a function of the cause with additive
noise independent of the cause [21], [16], [17], and that of
the algorithmic Markov condition [7], [1], which is based on
Kolmogorov Complexity. Loosely speaking, the key idea of
the latter is that if X causes Y , the shortest description of the
joint distribution P (X,Y ) is given by the separate descriptions
of P (X) and P (Y | X). Kolmogorov complexity, however,
is not computable, and hence any method that builds on this
observation requires a computable approximation, which in
general involves arbitrary choices [20], [24], [11], [8].

We define a causal inference rule that, while based on the
algorithmic Markov condition, is computable and guaranteed
to maintain the key properties of the ideal score. That is, we
propose to approximate Kolmogorov complexity via the Min-
imum Description Length (MDL) principle using Stochastic
Complexity, which is a score that is mini-max optimal with

regard to the model class under consideration. This means that
even in an adversarial setting where the true data generating
distribution does not reside in our model class M, we still
obtain the optimal encoding for the data relative to M [3].

We show the strength of this approach by instantiating
it for pairs of univariate discrete data, using multinomial
stochastic complexity. For this setting, stochastic complexity is
remarkably efficiently to compute, by which our score has only
a linear-time computational complexity. Through experiments
on synthetic and benchmark data we show that our method
performs very well in practice and outperforms the state of
the art by a large margin. Last, but not least, we perform
two case studies that show CISC indeed infers sensible causal
directions from real-world data.

In sum, the main contributions of this paper are as follows.
(a) we propose the first computable framework for causal

inference by the algorithmic Markov condition with prov-
able mini-max optimality guarantees,

(b) define a causal indicator for pairs of discrete variables
based on stochastic complexity,

(c) show how to efficiently compute it,
(d) provide extensive experimental results on synthetic,

benchmark, and real-world data, and
(e) make our implementation and all used data available

II. PRELIMINARIES

In this section, we introduce notations and background
definitions we will use in subsequent sections.

A. Kolmogorov Complexity

The Kolmogorov complexity of a finite binary string x is
the length of the shortest binary program p∗ for a Universal
Turing machine U that generates x, and then halts [9], [10].
Thus, K(x) = |p∗|. The conditional Kolmogorov complexity
K(x | y) of x relative to y is defined similarly as the length
of the shortest program that generates x, and halts, given y as
input. The amount of algorithmic information that y contains
about x is defined as I(y : x) = K(y) −K(y | x). Up to an
additive constant term, I(x : y) = I(y : x).

The Kolmogorov complexity of a probability distribution
P , K(P ), is the length of the shortest program that outputs
P (x) to precision q on input 〈x, q〉 [4]. The conditional variant
K(P | Q) is defined similarly but with the additional infor-
mation Q. Finally the algorithmic mutual information between
distributions P and Q is I(P : Q) = K(P ) − K(P | Q∗),
where Q∗ is the shortest program for Q.



III. CAUSAL INFERENCE BY AIT

Given two statistically dependent variables X and Y , we
want to infer their causal relationship. In particular, we want
to infer whether X causes Y , whether Y causes X , or they
are only correlated. In doing so, we take the usual assumption
of causal sufficiency [16], [17], [8]. That is, we assume there
is no confounding variable, i.e. hidden common cause, Z of
X and Y . We use X → Y to indicate X causes Y .

We base our inference method on the following postulate:

Postulate 1 (independence of input and mechanism [20]).
If X → Y , the marginal distribution of the cause P (X),
and the conditional distribution of the effect given the cause,
P (Y | X) are independent — P (X) contains no information
about P (Y | X) — and vice versa since they correspond to
independent mechanisms of nature.

The notion of independence, however, is abstract, and
requires formalization. A rather general, yet theoretical sound
formalization is that using the algorithmic information the-
ory [7] (AIT). The following theorem is hence a consequence
of the algorithmic independence of input and mechanism.

Theorem 1 (Th. 1 in [13]). If X is a cause of Y ,

K(P (X)) +K(P (Y | X)) ≤ K(P (Y )) +K(P (X | Y )) .

holds up to an additive constant.

In other words, we can perform causal inference simply by
identifying that direction between X and Y for which the fac-
torization of the joint distribution has the lowest Kolmogorov
complexity. Although this inference rule has sound theoretical
foundations, Kolmogorov complexity is not computable due
to the halting problem. However, the Minimum Description
Length (MDL) principle [18], [3] provides a statistically
sound and computable means for approximating Kolmogorov
complexity [3].

IV. CAUSAL INFERENCE BY MDL

In this section, we discuss MDL for causal inference.

A. Minimum Description Length Principle

The Minimum Description Length (MDL) [18] principle is
a practical version of Kolmogorov complexity. Instead of all
possible programs, it considers only programs for which we
know they generate x and halt. That is, lossless compressors.

In MDL theory, programs are often referred to as models.
By MDL principle, the best model is the one that describes the
data best when the complexity of the model is also accounted
for [3]. The shortest description of the data relative to a model
class is called the stochastic complexity. Typically code length
is used as a measure of description of the data.

B. Stochastic Complexity

Let X = (x1, x2, . . . , xn) be an i.i.d. sample of n observed
outcomes, where each outcome xi is an element from domain
X . Let Θ ∈ Rd, where d ∈ Z+, be the parameter space.

As model class M we consider a family of probability dis-
tributions consisting of all the different distributions P (. | θ)
that can be produced by varying the parameters θ. Formally,
a model class M is defined as M = {P (· | θ) : θ ∈ Θ}.

Let P (· | θ̂(X,M)) be distribution induced by the maxi-
mum likelihood estimate θ̂(X,M) of X relative to M. The
Normalized Maximum Likelihood (NML) distribution is then
defined as

PNML(X;M) =
P (X | θ̂(X,M))

R(M, n)
,

where the normalizing term R(M, n) is the sum over maxi-
mum likelihoods of all possible datasets of size n relative to
M. For discrete data, R(M, n) is defined as

R(M, n) =
∑

X′∈Xn

P (X ′ | θ̂(X ′;M)) , (1)

where Xn is the n-fold Cartesian product X × · · · × X
indicating the set of all possible datasets of size n with domain
X . If data X is defined over a continuous sample space, the
summation symbol in Eq. (1) is replaced by an integral.

The NML distribution has a number of important theoretical
properties. First, it gives a unique solution to the minimax
problem posed by Shtarkov [22],

min
P̄

max
X

log
P (X | θ̂(X,M))

P̄ (X | M)
.

That is, for any data X , PNML(X;M) assigns a probability,
which differs from the highest achievable probability within
the model class — the maximum likelihood P (X | θ̂(X;M))
— by a constant factor R(M, n). In other words, the NML
distribution is the mini-max optimal universal model with
respect to the model class.

Second, it also provides solution to another mini-max prob-
lem formulated by Rissanen [19], which is given by

min
P̄

max
Q

EQ

(
log

P (X | θ̂(X;M))

P̄ (X;M)

)
,

where Q is the worst-case data generating distribution (outside
the model class M), and EQ is the expectation over X . That
is, even if the true data generating distribution does not reside
in the model class M under consideration, PNML(X | M)
still gives the optimal encoding for the data X relative to M.

These properties are very important and relevant when
modelling real-world problems. In most cases, we do not know
the true data generating distribution. In such cases, ideally we
would want to encode our data as best as possible — close to
the optimal under the true distribution. The NML distribution
provides a theoretically sound means for that.

The stochastic complexity of data X relative to a model
class M using the NML distribution is defined as

S(X;M) = − logPNML(X;M)

= − logP (X | θ̂(X;M)) + logR(M, n) .

The term logR(M, n) is the parametric complexity of the
model classM. It indicates how wellM can fit random data.



The stochastic complexity of data under a model class M
gives the shortest description of the data relative toM. Hence
the richer theM, the closer we are to Kolmogorov complexity.
Intuitively, it is also the amount of information, in bits, in the
data relative to the model class.

C. Multinomial Stochastic Complexity

We consider discrete random variable X with m values.
Furthermore we assume that data X = (x1, . . . , xn) is
multinomially distributed, and the space of observations X
is {1, 2, . . . ,m}. The multinomial model class Mm then is

Mm = {P (X | θ) : θ ∈ Θm} ,

where Θ is the simplex-shaped parameter space given by

Θm = {θ = (θ1, . . . , θm) : θj ≥ 0, θ1 + · · ·+ θm = 1} ,

with θj = P (X = j | θ), j = 1, . . . ,m. The maximum
likelihood parameters for a multinomial distribution are given
by θ̂(X,Mm) = (h1/n, . . . , hm/n), where hj is the number
of times an outcome j is seen in X . Then the distribution
induced by the maximum likelihood parameters for X under
the model class Mm is given by

P (X | θ̂(X;Mm)) =

m∏
j=1

(
hj
n

)hj

.

And the normalizing term R(Mm, n) is given by

R(Mm, n) =
∑

h1+···+hm=n

n!

h1! · · ·hm!

m∏
j=1

(
hj
n

)hj

.

Then the NML distribution for X relative to Mm is

PNML(X;Mm) =

∏m
j=1(hj/n)hj

R(Mm, n)
.

At last, the stochastic complexity of X relative to Mm is

S(X;Mm) = n log n−
m∑
j=1

hj log hj + logR(Mm, n) .

We can compute the counts hj in O(n) with a single pass
over the data. Although the normalizing sum is exponential in
m, we can approximate it up to a finite floating-point precision
of d digits in sub-linear time with respect to the data size n
given precomputed counts hi [12]. Altogether we can compute
the multinomial stochastic complexity in linear time, O(n). In
the experiments we use d = 10.

D. Conditional Stochastic Complexity

For our purpose, we also need the conditional stochastic
complexity S(Y | X;Mm). Let S(Y | X = x;Mm) be
the stochastic complexity of Y conditioned on X = x. To
obtain the complexity of the conditional distribution, we define
the conditional stochastic complexity S(Y | X;Mm) as a
weighted sum of S(Y | X = x;Mm) over all possible values

of X , using the relative frequencies wx = hx/n as weights.
More formally,

S(Y | X;Mm) :=
∑
x∈X

wxS(Y | X = x;Mm) .

That is, first we form the sub-populations of Y by grouping
those outcomes that share the same x ∈ X value. We then
compute the stochastic complexities of each group. Finally, we
aggregate the locally computed stochastic complexities using
the frequency of the corresponding x value as a weight.

If there exists a bijective function between X and Y , then
PNML(Y | X = x;M) = 1/K, where K is the normalizing
term which is a constant for a fixed domain Y , is maximal
and hence S(Y | X;Mm) is minimal. If there is no bijection,
S(Y | X = x;Mm) gives the additional bits that we need
compared to the bijective case. This comes very close in spirit
to the Additive Noise Models (ANM). Instead of assuming
noise as an additive variable that represents the shortcoming of
the bijective function in explaining Y as in ANM, we consider
noise as the randomness introduced by different mappings for
a specific x value directly.

We can compute S(Y | X = x;Mm) in O(n). To compute
the conditional stochastic complexity S(Y | X;Mm), we
have to compute S(Y | X = x;Mm) over all x ∈ X .
Hence the computational complexity of conditional stochastic
complexity is O(n|X |). Now that we have defined both
stochastic complexity, and its conditional variant, next we
discuss how they can be used for causal inference.

E. Causal Inference by Stochastic Complexity

The stochastic complexity of data X relative to model class
M corresponds to the complexity of the NML distribution of
the data relative to M. This means we can use the stochastic
complexity of X as an approximation of the Kolmogorov
complexity of P (X). As such, it provides a general, yet
computable, theoretically sound approach for causal inference
based on the algorithmic Markov condition.

To infer the causal direction, we look over total stochastic
complexity in two directions — X to Y and vice versa.
The total stochastic complexity from X to Y , approximating
K(P (X)) +K(P (Y | X)) is given by

SX→Y = S(X;Mm) + S(Y | X;Mm) ,

and that from Y to X is given by

SY→X = S(Y ;Mm) + S(X | Y ;Mm) .

Following Theorem 1, using the above indicators we arrive at
the following causal inference rules.
• If SX→Y < SY→X , we infer X → Y .
• If SX→Y > SY→X , we infer Y → X .
• If SX→Y = SY→X , we are undecided.
That is, if describing X and then describing Y given X

is easier — in terms of stochastic complexity — than vice
versa, we infer X is likely the cause of Y . If it is the other
way around, we infer Y is likely the cause of X . If both



ways of describing are equally complex, or within a user-
specific threshold, we remain undecided. We refer to this
framework as CISC. The computational complexity of CISC
is O(nmax(|X |, |Y|)).

Causal inference using stochastic complexity has a number
of powerful properties. First, unlike Kolmogorov complexity,
stochastic complexity is computable. Second, the inference
rule is generic in the sense that we are not restricted to one data
type or distribution—we are only constrained by the model
class M under consideration, yet by the mini-max property
of NML we know that even if the data generating distribution
is adversarial, we still identify the best encoding w.r.t. M.

V. RELATED WORK

Constraint-based approaches like conditional independence
test [15] are one of the widely used causal inference frame-
works. However, they require at least three observed random
variables. Therefore they cannot distinguish between X → Y
and Y → X as the factorization of the joint distribution
P (X,Y ) is the same in both direction, i.e. P (X)P (Y | X) =
P (Y )P (X | Y ).

In recent years, several methods have been proposed that
exploit sophisticated properties of the joint distribution. The
linear trace method [6] infers linear causal relations of the
form Y = AX , where A is the structure matrix that maps
the cause to the effect, using the linear trace condition. The
kernelized trace method [2] infers non-linear causal relations
by mapping the observations to high dimensional reproducing
kernel Hilbert space.

The Additive Noise Models (ANM) [21] assume that the
effect is a function of the cause and the additive noise that
is independent of the cause. Causal inference is then done by
finding the direction that admits such a model. Over the years,
many frameworks for causal inference from real-valued data
have been proposed using ANMs [21], [5], [25], [17].

Algorithmic information theory (AIT) also provides a theo-
retically sound foundation for causal inference [7]. However,
as Kolmogorov complexity is not computable, practical in-
stantiations require computable notions of independence. The
information-geometric approach [8] defines independence via
orthogonality in information space. Vreeken [24] proposes a
causal framework based on relative conditional complexity and
instantiates it with cumulative entropy to infer the causal direc-
tion in continuous real-valued data. Budhathoki & Vreeken [1]
propose a decision tree based approach for causal inference on
univariate and multivariate binary data.

All above methods consider either continuous real-valued or
binary data. Causal inference from discrete data has received
much less attention. Peters et al. [16] extend additive noise
models to discrete data, and propose the DR algorithm. Liu &
Chan [11] (DC) define independence in terms of the distance
correlation between empirical distributions P (X) and P (Y |
X) to infer the causal direction from categorical data.

VI. EXPERIMENTS

We implemented CISC in Python and provide the source
code for research purposes, along with the used datasets, and

synthetic dataset generator.1 All experiments were executed
single-threaded on Intel Xeon E5-2643 v3 machine with
256GB memory running Linux. We compare CISC against
Discrete Regression (DR) [16], and DC [11]. In particular, we
use significance level of α = 0.05 for the independence test
in DR, and threshold of ε = 0.0 for DC.

A. Synthetic Data

To evaluate CISC on the data with known ground truth,
we consider synthetic data. We generate synthetic cause-
effect pairs with the ground truth X → Y using an additive
noise model (ANM). That is, first we generate the cause X ,
and then generate the effect Y using the model given by
Y = f(X) + N,N ⊥⊥ X , where f is a function, and N
is additive noise that is independent of X .

Following [16], we sample X from following distributions,
using independently generated uniform noise.
• uniform from {1, . . . , L},
• binomial with parameters (n, p),
• geometric with parameter p,
• hypergeometric with parameters (M,K,N),
• poisson with parameter λ,
• multinomial with parameters θ, and
• negative binomial with parameters (n, p).

We note that even though we generate data following ANM
from X to Y , the joint distribution P (X,Y ) might admit an
additive noise model in the reverse direction. Therefore in
some cases where we say that X → Y is the true direction,
Y → X might also be equally plausible, and hence full
accuracy might not be achievable in some cases. However,
this happens in only few trivial instances [16].

We choose parameters of the distributions randomly for
each model class. We choose L uniformly between 1 and 10,
M,K uniformly between 1 and 40, N uniformly between 1
and min(40,M + K), p uniformly between 0.1 and 0.9, λ
uniformly between 1 and 10, θ randomly s.t.

∑
θ∈θ θ = 1.0,

for every x choose f(x) uniformly between −7 to +7, and
noise N uniformly between −t to +t, where t is uniformly
randomly chosen between 1 and 7.

Accuracy — From each model class, we sample 1000
different models, and hence 1000 different cause-effect pairs.
For each model, we sample 1000 points, i.e. n = 1000. In
Figure 1, we compare the accuracy (percentage of correct
decisions) of CISC against DC and DR for various model
classes. We see that CISC either outperforms or is as good
as the other methods in all but one case. This certainly proves
the generality of CISC.

Although we compute the stochastic complexity under
multinomial model class, we are still able to perform as
good with other model classes. This is due to the mini-max
optimality property of the NML distribution.

Decision Rate — Next we investigate the accuracy of CISC
against the fraction of decisions CISC is forced to make. To
this end, for each model class, we sample 1000 new different

1http://eda.mmci.uni-saarland.de/cisc/
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Figure 1: Accuracy on synthetic cause-effect pairs sampled
from various model classes.

0 0.25 0.5 0.75 1

0

0.5

1

decision rate

ac
cu

ra
cy

DC

DR

CISC

Figure 2: Accuracy versus decision rate on synthetic cause-
effect pairs sampled from uniform model class.

cause-effect pairs. For each cause-effect pair, we sample 1000
points. We sort the pairs by their absolute score difference in
two directions (X → Y vs. Y → X), i.e. |SX→Y − SY→X |
in descending order. Then we compute the accuracy over top-
k% pairs. The decision rate is the fraction of top cause-effect
pairs that we consider. Alternatively, it is also the fraction
of cause-effect pairs whose |SX→Y − SY→X | is greater than
some threshold δ. For undecided pairs, we flip a coin. For other
methods, we follow the similar procedure with their respective
absolute score difference.

In Figure 2, we show the decision rate versus accuracy for
uniform model class on these samples.2 We see that both CISC
and DR are highly accurate up to a very high decision rate in
all cases. Both CISC and DR are highly accurate on the cause-
effect pairs where the absolute score difference is very high —
where the methods are most decisive. DC, on the other hand,
performs poorly. We also observe the similar behaviour with
other model classes.

Scalability — Next we empirically investigate the scala-
bility of CISC. First, we examine runtime with regard to the
sample size. To this end, we fix the domain size of the cause-
effect pairs to 20, i.e. |X | = |Y| = 20. Then for a given sample
size, we sample X uniformly randomly between 1 and |X |.
Likewise for Y .

In Figure 3a, we show the runtime of CISC, DC, and DR
for various sample sizes. We observe that both CISC and DC
(overlapping line) finish within seconds. DR, on the other hand,
takes in the order of hours.

2As in this experiment we force the algorithms to decide, as well as
consider a fresh sample of randomly generated data, the accuracies at 100%
decision rate may differ a little in comparison to Fig. 1
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Figure 3: Runtime versus (a) sample size, and (b) domain size.

Next we fix the sample size to n = 100 000 and vary
the domain size |X | = |Y|. We observe that both CISC and
DC again finish within seconds over the whole range. As DR
iteratively searches over the entire domain, it shows a non-
linear runtime behaviour with respect to the domain size.

Overall, these results indicate that DR is fairly accurate, but
relatively slow. DC is fast, but (highly) inaccurate. CISC is both
highly accurate, and fast.

B. Benchmark Data

To evaluate how well CISC fares on real data that is highly
unlikely drawn from a multinomial we evaluate it on 95
real-world benchmark cause-effect pairs with known ground
truth [14]. Most of these pairs are continuous valued. As there
does not exist a discretization strategy that provably preserves
the causal relationship between variables, we not know the
underlying domains of the data, following Peters et al. [16]
for all pairs we simply consider the unique values as discrete.

In Figure 4, we compare the accuracy of CISC against
DC and DR at various decision rate together with the 95%
confidence interval for a random coin flip. If we look over
all the pairs, we find that CISC infers correct direction in
roughly 67% of all the pairs. When we consider only those
pairs where CISC is most decisive—with a very high value
of |SX→Y − SY→X |, it is 100% accurate on top 22% of the
pairs, 80% accurate on top 45% of the pairs. Also in the same
figure, we compare the accuracy of CISC against various state-
of-the-art frameworks for continuous real-valued data namely
IGCI [8], CURE [20], and pHSIC [14], [5]. Overall we see that
CISC is even on-par with the top-performing causal inference
frameworks for continuous real-valued data. DC and DR, on
the other hand, are insignificant at almost every decision
rate. Especially DR performs notably less well here than on
synthetic data.

Further we perform permutation testing on the benchmark
pairs using CISC at a significance level of 0.05. In particular,
we observe that results of CISC on 55 pairs are statistically
significant. Out of those 55 pairs, CISC identified correct
direction in 38 cases (69.09%). On the insignificant pairs, CISC
performs almost with a coin flip (22 correct, 18 incorrect).

C. Real Data

Abalone — First we consider the Abalone dataset from
the UCI machine learning repository. The dataset contains the
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physical measurements of 4 177 abalones, which are large,
edible sea snails. We examine sex (X) against length (Y1),
diameter (Y2), and height (Y3). Following Peters et al. [16],
we treat the data as being discrete, and consider X → Y1,
X → Y2, and X → Y3 as the ground truth as sex causes the
size of the abalone and not the other way around.

We observe that both CISC, and DC infers correct direction
in all three cases with a large score difference between
two directions in all cases. DR, on the other hand, remains
indecisive in the third case.

NLSchools — The NLSchools dataset is the 99-th pair in
the Tübingen cause-effect benchmark pairs. It contains the
language test score (X), and socio-economic status of pupil’s
family (Y ) of 2287 eighth-grade pupils (aged about 11) from
132 classes in 131 schools in the Netherlands.

We regard Y → X as the ground truth as the socio-
economic status of the family is one of the causes of the
language test score. With CISC, we get SX→Y = 12168.68
bits, and SY→X = 10208.60 bits. Therefore CISC infers
Y → X , which is also the true direction. We note that both
DC and DR also identify the correct direction.

Overall, these results illustrate that CISC finds sensible
causal directions from real-world data.

VII. CONCLUSION

We proposed a general, yet computable framework for
information-theoretic causal inference with optimality guar-
antees. As a proof of concept, we proposed the linear-time
CISC algorithm for causal inference between pairs of univariate
discrete variables, using stochastic complexity over the class of
multinomial distributions. Extensive evaluation on synthetic,
benchmark, and real-world data showed that CISC is highly
accurate, outperforming the state of the art by a margin, and
scales extremely well to both sample and domain sizes. Future
work includes considering richer model classes, as well as
structure learning for causal discovery.
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