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Abstract—The analysis of high dimensional data comes with
many intrinsic challenges. In particular, cluster structures become
increasingly hard to detect when the data includes dimensions
irrelevant to the individual clusters. With increasing dimension-
ality, distances between pairs of objects become very similar, and
hence, meaningless for knowledge discovery.

In this paper we propose Cartification, a new transformation
to circumvent this problem. We transform each object into an
itemset, which represents the neighborhood of the object. We do
this for multiple views on the data, resulting in multiple neigh-
borhoods per object. This transformation enables us to preserve
the essential pairwise-similarities of objects over multiple views,
and hence, to improve knowledge discovery in high dimensional
data. Our experiments show that frequent itemset mining on the
cartified data outperforms competing clustering approaches on
the original data space, including traditional clustering, random
projections, principle component analysis, subspace clustering,
and clustering ensemble.
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I. INTRODUCTION

Many knowledge discovery tasks rely on some notion
of similarity between objects. For example, in clustering,
the goal is to group similar objects into a cluster, while
separating dissimilar objects into different clusters. For many
real world applications, such as in customer segmentation,
gene expression analysis, and health surveillance, we observe
that their inherently high dimensional data spaces hinder the
application of traditional clustering algorithms. In particular,
one of the main problems with high dimensional data is that
the distances between pairs of objects, measured over the full
data space, rapidly grow more and more alike for higher num-
bers of dimensions—which essentially renders the notion of
neighborhoods meaningless in the high dimensional space [4].
This effect is well-known as the curse of dimensionality, and
affects all methods that consider the full data space.

Loosely speaking, on the one hand we find existing
approaches that aim to alleviate this problem by finding
subspaces over which to calculate similarities. Examples in-
clude unsupervised feature selection [7], dimensionality reduc-
tion [14], meta-distance measures [13], or subspace search [5].
Each of these proposes a fixed notion of similarity and is not
flexible in adapting to the hidden cluster structure, or, local
neighborhoods, of the data. On the other hand we find subspace
clustering, which proposes to detect individual projections for
each relevant local neighborhood [24], [22]. Unfortunately,
however, finding the relevant dimension sets is a combinatorial
problem that adds to the intrinsic complexity of the cluster

analysis itself. Overall, existing subspace approaches lack
efficient computation [2], [15], [20], are proven to be NP-hard
[21], or lack local subspace projections [5], [16], [23].

In this paper we propose a new transformation to cir-
cumvent these problems. In particular, we tackle the dual
challenge of (1) considering multiple local subspaces and (2)
exponential complexity of the search space. We propose to not
directly consider the original data, but to transform it such that
all local neighborhoods are preserved, allowing for example,
clustering data in multiple projections of the data. Intuitively,
we consider multiple views on the original data space (i.e., a
high dimensional database) and transform these views into a
novel itemset space. We call our transformation cartification,
following the illustrative idea of building shopping carts, and
storing the bought products in the transactional data scheme
known from frequent itemset mining.

In a nutshell, we transform each object into a cart contain-
ing all k nearest neighbors of that object. For each object,
we exploit multiple views on the original data space by
using different (dis)similarity measures for our neighborhood
assessment. By using multiple views on the data, neighborhood
information, i.e. similarity, is preserved with increasing number
of dimensions in at least some of these views. This leads to
a robust preservation of local neighborhoods in subspace pro-
jections of the original data space. Applying frequent itemset
mining then reveals hidden cluster structures. Frequency of
items, and itemsets, implicitly measures the similarity of co-
occurring objects, and hence, automatically excludes irrelevant
dimensions with noisy data distributions. That is, in our
transformed data, an itemset with a high frequency means
that the corresponding objects share a local neighborhood.
By checking which transactions support the itemset, we can
easily infer the subspace in which these objects are clustered.
Moreover, as neither noisy objects nor irrelevant dimensions
will add significantly to the supports, they do not interfere with
the detectability of subspace clusters.

In our experiments we focus on clustering as the underlying
data mining task and show that our transformation is more
stable for cluster detection than using the original data space.
We are able to detect clusters and their individual subspace
projections. For each cluster, our method excludes locally
irrelevant dimensions, and hence, is robust w.r.t. increasing
numbers of dimensions. Overall, we show that our transfor-
mation outperforms traditional clustering, random projections,
principle component analysis, subspace clustering methods,
and clustering ensemble on data projections.



II. RELATED WORK

In this paper we consider clustering as an application
domain for our transformation. Traditional clustering meth-
ods [12] have been shown to be affected by increasing num-
bers of dimensions in real databases. Clustering models that
measure similarities over all given dimensions (i.e., the full
data space) are hindered by irrelevant dimensions and loss
of contrast in high dimensional data spaces [4]. In particular,
traditional distances such as Euclidean or Lp norms are af-
fected by the concentration of norms with increasing number
of dimensions [17]. We address this general problem and
propose a data transformation for more robust cluster detection
in subspaces of high dimensional data.

Dimensionality reduction techniques [14], [17] or unsu-
pervised feature selection [7], [25] are general techniques for
projecting a database to single lower-dimensional projections.
Such projections, however, incur information loss. Moreover,
these methods are limited to single views of the data. That
is, clusters are detected only in a single projection although
other projections might reveal additional cluster structures and
novel knowledge as well. We propose a different processing,
which captures multiple views on the data, and hence, allows
for cluster detection in arbitrary subspace projections.

Subspace clustering [24], [22] searches for clusters in
subsets of dimensions. However, every clustering model needs
special adaptation. For example, the well-known K-Means
algorithm has been extended to subspace projections, namely
Proclus [1]. Other clustering notions such as DBSCAN need
a totally different processing [15]. Recently, more general
approaches have been proposed for subspace search [5], [16],
[23], leaving the discovery of clusters or outliers to specialized
algorithms. However, all of these methods are computationally
expensive as they search in an exponential set of subspaces.
With our method we follow the idea of mining multiple
subspace projections. However, in contrast to the existing
approaches we aim at a general transformation of the prob-
lem into a single itemset space that preserves neighborhood
similarity over all subspaces.

As we incorporate multiple views into one, consensus
methods are related. A naive approach is to cluster each of
the views, and then use clustering ensemble methods [9],
[26], [8] to derive a consensus solution. We include this
as a baseline in our experiments. Such clustering ensemble
techniques, however, focus on the combination of different
results and do not address the high dimensionality problem sys-
tematically. In contrast to the consensus approach, we start at
one-dimensional projections and systematically search for the
correlated dimensions by itemset mining on the transformed
data space. This allows us to find multiple overlapping clusters
in different subspaces, in contrast to the single clustering
obtained by consensus techniques.

III. CARTIFICATION

In this section we explain our transformation from a high
dimensional numeric space into a transaction database. In
particular we show how this transformation preserves neigh-
borhood information by co-occurrence of objects.

A. Basic Notions

Our transformation turns the neighborhood information of
a high dimensional data space into a transaction database.

INPUT: HIGH DIMENSIONAL NUMERIC DATABASE
Let A = {A1, . . . , Ad} be a set of d dimensions. A data object,
o, is defined as a tuple of values over A. A d-dimensional
database, D, is a collection of n data objects such that every
object in D is represented by a d-dimensional vector o ∈ Rd.

The curse of dimensionality [4] intuitively states that if
the number of dimensions increase, distances between objects
grow more and more alike. Thus, local neighborhood becomes
meaningless for a large number of dimensions. Our transfor-
mation tries to preserve the local neighborhoods inside clusters
that show high similarity. Therefore, we use multiple views on
the data by using different similarity measures for each view.

We use the notation ofM as a set of different measures to
induce all of these views. An individual measure m is simply a
function that represents the similarity relation between pairs of
objects. For example, we use mS for a measure over arbitrary
attribute set S ⊆ A. Since we exploit the relative similarities
of objects, a measure can be a dissimilarity measure (e.g.
Euclidean distance), or a similarity measure (e.g. Jaccard
similarity), as long as the objects can be ordered by their
pairwise similarity. Intuitively, one can think of m as the
projection scheme, which, obviously, can model any arbitrary
transformation of the data.

OUTPUT: TRANSACTION DATA REPRESENTATION
For a set of items I, an itemset X is defined as X ⊆ I. A
transaction t = (tid , X) is a pair of unique transaction id and
an itemset. A transaction database T is a set of transactions
over I. The support of an itemset X in database T is the
number of transactions in T in which X occurs, i.e.,

suppT (X) = |{t ∈ T | X occurs in t}|.

An itemset is called frequent if its support is larger than some
user-defined threshold called the minimum support or minsup.

B. Formal Transformation

Cartification transforms the original dataset into a coali-
tion of different views on the data, such that each of them
contributes with the neighborhood information of a given
similarity measure.

Definition 1 (View of an object): Let o ∈ D, pi ∈ D,
|D| = n the number of objects in D, and m a dissimilarity
measure. The cart Cm(o) of object o is a tuple of its neighbors,
ordered descending by their similarity to o. Formally,

Cm(o) = (p1,p2, · · · ,pn)

with, m(o,pi) ≤ m(o,pj) ⇐⇒ i < j.

Neighborhood information on objects p that are far away
from o, contributes very little towards the discernibility of
local cluster structures, therefore, far away neighbors can be
excluded from the carts. That is, carts can be trimmed to
include just the top-k Nearest Neighbors (kNN) of object o
w.r.t a similarity measure m.



Definition 2 (View of a measure): A local view Cm is a
reflection of neighborhood information from the view of a
single similarity measure m:

Cm =
⋃
o∈D

Cm(o)

Since using the transformation of only one measure would
be too restrictive, we employ multiple views to collect infor-
mation about neighborhoods.

Definition 3 (Transformed database): LetM be the set of
measures, and Cm a local view of the similarity measure m,
then a cartified database C is defined as

C =
⋃

m∈M
Cm

After the transformation, neighbors of each object for each
measure become clearly visible on their corresponding carts.
Aggregating this neighborhood information from a selection
of measures will reveal the cluster structures. We utilize the
intrinsic property of neighborhoods, that is, the strong depen-
dence of objects with high similarity inside a cluster is reflected
in their co-occurrence in both their own neighborhoods, as well
as in the neighborhoods of objects close-by.

C. Co-occurrence of objects

Frequent occurrence of an object set X in C indicates
that these objects are often spotted in the same neighborhood
together in the original space. That is, they are likely to be
related. Every measure reflects a different set of relations in the
data and cartification extracts the neighborhood information for
each similarity measure separately. As such, extra measures
add information; the accuracy of individual measures is not
disturbed by irrelevant views.

Definition 4 (co-occurring object set): The occurrence of
an object set X is the number of carts C ∈ C that are a superset
of X . Formally,

occurrence(X) = |{C | X ⊂ C,C ∈ C}|

A cluster X is then defined as a set of co-occurring objects
w.r.t. parameter minsup:

occurrence(X) ≥ minsup

We measure the occurrence of an object set X by simply
counting the co-occurrences of these objects in any cart in
our cartified database C. This can be considered as an implicit
similarity assessment on the objects in X . Clustered objects
have to share a large amount of objects in their respective
neighborhoods. Hence they show high mutual similarity to
each other. Please note, that this clustering criterion can be con-
sidered as a generalization of Shared Nearest Neighborhood
(SNN) clustering [13]. In contrast to SNN, we use multiple
local views, which in turn better grasp the structures that exist
only in data projections. Furthermore, we keep the order of the
neighbors, that can be used to improve the following analysis
steps after our data transformation.

Formally, clustered objects X = {p1, . . . ,pn} will be
clearly separated from residual objects q 6∈ D \X in at least
some measures of M:

occurrence(X) ≥ minsup
(Def. 4)⇐⇒

∃V ⊆ D×M∧ |V | ≥ minsup

∀(o,m) ∈ V : X ⊂ Cm(o)
(Def. 1)⇐⇒

∃V ⊆ D×M∧ |V | ≥ minsup

∀(o,m) ∈ V : m(o,pj) < m(o,q) ∀pj ∈ X ∧ q 6∈ Cm(o)

Thus, there exists a set of carts that reflect the similarity of
all clustered objects X in some of the viewsM. The similarity
of a cluster is preserved in these views, i.e., objects pj are
clustered together in the neighborhood of a central object o,
while other objects q are clearly separated from this central
object. Please note that there might be other contradicting
views, however, these do not have a negative effect on the
number of co-occurrences of X . Therefore, similarity and
neighborhoods are preserved. In contrast to this, the original
data space is effected by irrelevant dimensions, and thus, does
not reveal any cluster structures.

D. Instantiation: One-Dimensional Data Projections

In order to preserve neighborhoods and circumvent the
curse of dimensionality [4], we follow the idea of lower-
dimensional projections as meaningful instantiation of different
measures. Lower-dimensional projections have shown to be ef-
fective for query processing [11] and subspaces clustering [24]
in high dimensional databases. They capture neighborhood
information w.r.t. different views on the data and provide us
the required similarity measures on the database. However, in
our case we do not need complex analysis and exponential
overhead of subspace clustering [2], [15], [20]. As minimum
requirement the similarity measures have to identify neigh-
borhoods for each individual dimension only. Then possible
correlation in higher-dimensional projections is assessed by
our co-occurrence.

We simply use M = {m1, . . . ,md} as initial set of
measures. Each measure mi represents a one-dimensional
projection of the data w.r.t. attribute Ai. It is simply computed
by the Euclidean distance in this dimension. Using these
measures, we allow for similarity assessment in any projection
of the data. A co-occurring object set X can show mutual
similarity in an arbitrary subspace S ⊆ A:

∃Ai ∈ S : X ⊂ Cmi
(o) ∀o ∈ X ⇐⇒

|oi − pi| < |oi − qi| ∀o,p ∈ X ∧ q 6∈ X

Please note that we might consider more complex simi-
larity measures as alternative to the current one-dimensional
instantiation, e.g. by using correlation analysis or subspace
search [5], [16], [23]. Our current solution abstracts from such
instantiations and provides the general processing for any set
of similarity measures M.

Let us now give an example of how we can identify
central elements of a cluster. Assume we are given the two-
dimensional dataset with A = {x, y} and data objects as
shown in Figure 1a. Using Euclidian distance on separate
dimensions as dissimilarity measures, the CARTIFY algorithm



Table I: Cartification of the data in Figure 1a, for k = 3.

x cart y cart

1 {1, 2, 3} 1 {1, 2, 3}
2 {1, 2, 3} 2 {1, 2, 3}
3 {2, 3, 4} 3 {1, 3, 5}
4 {3, 4, 5} 4 {3, 4, 5}
5 {3, 4, 5} 5 {3, 4, 5}
6 {5, 6, 7} 6 {4, 6, 8}
7 {7, 8, 9} 7 {7, 8, 9}
8 {7, 8, 9} 8 {7, 8, 9}
9 {8, 9, 10} 9 {7, 9, 11}
10 {9, 10, 11} 10 {9, 10, 11}
11 {9, 10, 11} 11 {9, 10, 11}

x

y

2 4 6 8 10 12 14 16 18 20 22

2

4

6

8

10

12

14

16

18

20

22

1
2

3

4

5

6

7
8

9

10

11

(a) Example dataset
1 2 3 4 5 6 7 8 9 10 11

2

4

6

8

10

F
re
q
u
en
cy

(b) Item Frequencies for k = 3

Figure 1: Cartification Example

(cf. Section III-E) creates a database where each cart is
composed of the items ordered by one-dimensional distances
to each item.

For this example, instead of taking into account detailed
ordering in the carts, we truncate each transaction to the same
size, k, disregard the inner order, and treat each transaction as
a set. This process converts the cartified database to a regular
transactional database where each transaction is the k-nearest
neighbors of each item on each dimension. For example,
the resulting database for k = 3 is shown in Table I. The
first two columns show the cartification for the x-dimension,
and the second two columns for the y-dimension. Every row
corresponds to the cart generated from one of the data points.
For instance, for point 3, the three nearest neighbors in the
x-dimension are points 2, 3, and 4, while for the y-dimension
these are 1, 3, and 5.

In Figure 1b, we plot the frequencies of all items (points)
in this cartified database. The plot shows that there are two
points, 3 and 9, with a high frequency. As Figure 1a shows,
these points are in the centers of the clusters {1, 2, 3, 4, 5} and
{7, 8, 9, 10, 11} respectively. Additionally, point 6 has a very
low frequency which corresponds to the point being an outlier
w.r.t. all other points in the figure.

E. Algorithm and Complexity Analysis

Suppose we are given a database D over attributes A and
a set of similarity measures M, defined over S ⊆ A. The
pseudo-code is given as Algorithm 1.

Algorithm 1 The CARTIFY Algorithm

Input: A database D, set of similarity measures M
Output: The cartified database C of D over M

1: C ← ∅
2: for each m ∈M do
3: Cm ← ∅
4: for each o ∈ D do
5: C ← sort p ∈ D according to m(o,p)
6: Cm ← Cm ∪ C
7: C ← C ∪ Cm
8: return C

Theoretically, space requirement of CARTIFY algorithm is
n× n× |M|, where n is the number of items and |M| is the
number of measures. However, for practical applications, it is
not required to create the full-length carts. Instead, carts can be
trimmed to a constant value to limit the size of the database.

Worst case time complexity of CARTIFY is
O(n2 log(n)|M|). For some measures, e.g., 1D projections,
sorting can be done per measure, in the outer loop, which
results in a time complexity of O(n log(n)|M|). Moreover
the processing of the cartification can easily be parallelized
over shared memory or distributed systems.

IV. AN APPLICATION OF CARTIFICATION TO
SUBSPACE CLUSTERING

As an example of how the information in the transformed
data can be used, in this section we introduce CARTICLUS.
CARTICLUS, short for cartification-based subspace cluster
detection, is an algorithm for mining subspace clusters by
means of a straightforward itemset mining based approach.
Even though relatively simple method, the experiments in
Section V show that, it outperforms competing approaches on
high dimensional data.

Measures that are used for transformation of the original
datasets are Euclidean distances on one-dimensional projec-
tions. After the transformation, carts are trimmed to a user-
specified length k. To detect subspace clusters we then stochas-
tically generate n maximal frequent itemsets. After a simple
post-processing, we report the sufficiently frequent object sets
as subspace clusters.

We give the pseudo-code of CARTICLUS as Algorithm 2. It
has two input parameters: k, the size of each cart and minsup,
the minimum number of co-occurrences of an object set in the
cartified database C. Note that, since a sample of the maximal
frequent itemsets (MFIs) is enough, CARTICLUS efficiently
mines a sample of the MFIs instead of generating all of them
(Lines 3–12). Our experiments show that MFIs tend to identify
subsets of clusters. In order to be able to report the key cluster
structure without redundancy, CARTICLUS merges MFIs that
are highly similar to each other, lines 13–20. The dimensions
that an object set has non-zero support are reported as the
subspaces of the corresponding cluster (line 19–20).

CARTICLUS takes cartified database as input. Therefore,
additional analysis tasks, e.g., using different parameters or
even different mining algorithms, can be performed on the
same cartified database, with a minimal data processing.



Algorithm 2 CARTICLUS Algorithm
Input: Cartified database C, minimum support minsup, min-

imum length minlen , number of requested object sets n
Output: Set of subspace clusters X as pairs of object and

subspace sets
1: X ← ∅ // MFIs
2: Θ← all objects in C
3: repeat
4: X ← {o } // randomly select a frequent object o ∈ Θ
5: P ← {o | suppC(X ∪ {o}) > minsup,o ∈ Θ}
6: repeat
7: X ← X ∪ { p } // randomly select an object p ∈ P
8: P ← {o | suppC(X ∪{o }) > minsup,o ∈ P \X}
9: until P = ∅

10: if |X| ≥ minlen then
11: X ← X ∪ {X}
12: until |X | ≥ n or maximum iterations are reached
13: X ′ ← ∅ // output clusters
14: for each X ∈ X do
15: for each X ′ ∈ X ′ do
16: if |X ′ ∩X| > minlen then
17: X ′ ← X ′ ∪X
18: continue with next X
19: X ′ ← X ′ ∪ (X ′, {m | suppCm

(X) > 0})
20: return X ′

V. EXPERIMENTS

To explore (1) the influence of dimensionality on per-
formance, (2) noise awareness, and (3) relevant subspace
detection capabilities, we compare CARTICLUS against five
well-known clustering algorithms: (1) Proclus [1] is a pro-
jected clustering algorithm, which is one of the best per-
foming subspace clustering algorithms according to a recent
evaluation study [22]. (2) Traditional K-Means [18] on all
dimensions (full space), (3) RP-KM as K-Means on a set
of random projections, and (4) PCA-KM as K-Means on
a transformed dataspace by Principal Component Analysis
(PCA). (5) CSPA [26] is an ensemble clustering algorithm
using 10 runs of K-Means on separate dimensions as input.
To improve the stability of the clusters, we use k-means++ [3]
instead of the original K-Means.

We run each setup for 10 times and report the average
results. For all competitors, we try to optimize the respective
parameter settings by supplying the true number of clusters
and dimensions. For our approach, we set minlen parameter
approximately to the half of k. Since it is just a minimum,
this setting increased the robustness without limiting the ability
of finding the whole clusters. The parameter n is set to 100
for all of the experiments. For quality assessment we use the
ground truth of synthetic data. We use F1 measure (harmonic
mean of precision and recall) and E4SC (which includes
quality assessment of detected subspaces) as used in other
publications [20], [21], [10].

We use synthetic data as also used in the evaluation study
on subspace clustering [22]. We provide all data sets together
with algorithms (implemented in Java) on our project website.1

1http://adrem.uantwerpen.be/cartification
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Figure 2: Increasing the number of (1) overall dimensions,
(2) noise objects, and (3) irrelevant dimensions

All of the experiments are run on a standard PC and each run
of each algorithm is completed under 2 minutes.

A. Dimensionality

To assess the subspace cluster detection capabilities of the
methods w.r.t. increasing number of dimensions, we conduct
experiments on datasets where the number of objects and the
average ratio of relevant dimensions per cluster stay constant
while the number of dimensions increases. Datasets D10, D25
and D75 have 10, 25 and 75 dimensions, respectively.

The results for these experiments are shown on the first row
of Figure 2. The quality of the clusters found by CARTICLUS
is not affected by the number of dimensions. This is expected,
because more dimensions only add more views for our method
without corrupting the existing views. Therefore, our transfor-
mation truly preserves the neighborhood information and its
cluster detection capability does not degrade with an increase
in the dimensionality.

B. Noise Awareness

Evaluation of noise awareness is done using a set of
datasets that contain a fixed number of clusters and dimensions
but include different ratios of noise. Datasets N30, N50 and
N70 have 30%, 50% and 70% of noise objects, respectively.



Results on second row of Figure 2 show that CARTICLUS
effectively detects high quality clusters, even if they exist in
only 30% of the data. Since random objects are not nearest
neighbors of most clustered objects in many views of the data,
they are not expected to be in many carts, therefore, the support
of object sets that they are part of are low. While CARTICLUS
detects structure it ignores objects with low supports, i.e.,
noise. In contrast to this robust behavior, we observe K-Means,
Proclus and CSPA to degenerate with increasing noise.

C. Subspace Detection

To evaluate the correct detection of subspaces, we generate
datasets with 10 hidden clusters having 2 to 7 relevant di-
mensions and add additional random dimensions. The datasets
10c20d, 10c60d and 10c210d have 10, 50 and 200 irrelevant
dimensions. All of these datasets include additional 5% ran-
dom objects as noise.

Results on the third row of Figure 2 clearly show the
benefits of aggregating information from multiple views of the
data. CARTICLUS and CSPA can extract and efficiently use the
information from the subspaces that contain structures to over-
whelm the negative effects of irrelevant dimensions. Thanks to
stricter cluster definition of CARTICLUS, i.e., co-occurrence
instead of pair similarities, and noise detection capabilities,
it can detect better clusters than CSPA. Proclus ignores the
irrelevant dimensions up to some level. However, it degenerates
with increasing number of irrelevant dimensions. Since feature
selection techniques treat all dimensions equally, increasing the
number of irrelevant dimensions renders them useless. Note
that, since CSPA cannot report subspaces for clusters, its E4SC
score decrease with the number of dimensions.

VI. CONCLUSIONS

The main contribution of this paper is Cartification, a novel
and highly flexible framework for transforming high dimen-
sional data into the well-studied domain of transaction data,
while preserving all local neighborhood information in the
respective lower-dimensional projections. Advantages include
freedom in the choice of similarity measures. Our experiments
show that the cartified data space maintains neighborhood
information, allowing a simple itemset mining approach to out-
perform variety of established dedicated clustering algorithms.
Moreover, the literature on mining transaction data is rich in
tools to find unexpected/non-redundant relations [19] as well
as very unlikely combinations [6], [27], which in turn can be
used to find subspace clusters of various interests. In short, our
transformation opens a wide area of applications for cartified
data, in particular for those tasks that rely on neighborhood
information on high dimensional data.
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[16] F. Keller, E. Müller, and K. Böhm, “HiCS: High contrast subspaces for

density-based outlier ranking,” in ICDE, 2012.
[17] J. Lee and M. Verleysen, Nonlinear Dimensionality Reduction.

Springer, New York, 2007.
[18] J. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” in Proc. Symp. Math. Stat. and Prob, 1967, pp.
281–297.

[19] M. Mampaey, N. Tatti, and J. Vreeken, “Summarizing data succinctly
with the most informative itemsets,” ACM TKDD, pp. 1–44, 2012.

[20] G. Moise, J. Sander, and M. Ester, “P3C: A robust projected clustering
algorithm,” in ICDM, 2006, pp. 414–425.
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