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Abstract—The maximum entropy principle uniquely identifies
the distribution that models our knowledge about the data, but is
otherwise maximally unbiased. As soon as we include non-trivial
observations in our model, however, exact inference quickly be-
comes intractable. We propose a relaxation that permits efficient
inference by dynamically factorizing the joint distribution into
factors. In particular, we show that these factors are learnable
from data and that it is consistent with standard maximum
entropy distribution. Through an extensive set of experiments
we show that the relaxation is scalable, approximates the vanilla
distribution closely, allows for a classification that is as good, as
well as results in a concise set of patterns.

I. INTRODUCTION

The maximum entropy (maxent) principle allows us to
uniquely identify that distribution which unbiasedly matches
our observations from the data. It is therefore no surprise
that this principle is useful in machine learning [23], [16],
but, as it provides a statistically well-founded way to measure
interestingness it is especially useful in data mining; not only
can we use it to rank results for given prior beliefs [7],
[12], discover small and non-redundant sets of informative
patterns [17], but also to decompose data [5].

The computational complexity of inferring the expectation
is, however, affected by the observations that we incorporate
into the model. As long as we are only interested in individual
features, the distribution factorizes into the product of their
frequencies and is therefore simple to infer. But whenever
we incorporate dependencies between attributes, such as co-
occurrence frequencies of features, the inference becomes
PP-hard [20], which is intractable in practice. One way to
circumvent this is to factorize the distribution according to
the independences in our statistic S. That is, if those are
given as a set S, we can partition this set into independent
subsets Si, and infer the maxent distribution p∗i for each Si
independently. This factorization is only faithful to the data,
if we these correspond to truly independent sets attributes. To
ensure an efficient inference, existing methods [17], [5] restrict
these sets by disregarding dependent attributes as independent,
which can lead to an unfaithful representation of the data.

In this paper we take a different approach, and rather start
from the observation that not everything we know is always
equally relevant. We propose a relaxation to the inference of
the expectation that uses only the subsets of S that is most
relevant to the query x, instead of using all available infor-
mation for each query. Hence, we use a different distribution,
depending on what we query for. In other words, rather than

enforcing one static factorization for all queries, we consider
different, dynamic factorizations of S depending on the query.

We show that our relaxation is learnable, is consistent
with the maximum entropy principle, and its relationship to
discovering pattern from data. We show that our approach
allows us to consider almost arbitrarily large sets, approximate
complex ground truth distributions better than the more con-
strained existing solutions, while at the same time being faster.
Moreover, through extensive experiments on both synthetic
and real datasets, we also show that our relaxed distribution
approximates the vanilla maximum entropy distribution well
in the area of multi-class classification and pattern set mining.

In sum, our main contributions are that we (I) introduce the
relaxed maximum entropy distribution, and provide a practical
realization, (II) show how factors of the model relate to pat-
terns in data, (III) show via a wide range of experiments that
the distribution approximates the vanilla maximum entropy,
classifies as well and discovers concise pattern sets.

II. RELATED WORK

The maximum entropy principle was proposed Jaynes [10],
[11] as a general approach to choosing probability distri-
butions. The theoretical foundations were further developed
by among others Csiszár [4], who showed that the maxent
distribution minimizes the Kullback-Leibler divergence to the
uniform distribution, has an exponential form, and that its
maximization is convex.

For large event spaces Ω, the main bottleneck is the com-
putation of expectations. Tatti [20] showed that the inference
of in the case of itemset frequencies is PP-hard, but we do
not always have to infer the full distribution, as we can also
approximate it. Barron and Sheu [1] show that under moment
constraints this is possible in terms of exponential families
and basis function expansion using e.g. polynomials. Bierig
and Chernov [2] studied Monte Carlo methods to approximate
the distribution. Singh and Vishnoi [18] recently established
its equivalence with general counting problems and showed
that we can approximate counts in order to approximate the
distribution. These translate to noisy and therewith relaxed
moment constraints. Dudı́k et al. [8] presents a maximum
entropy problem with relaxed constraints that are generalized
regularization measure in their dual form. For possibly noisy
generalized constraints, Sutter et al. [19] proposed an approxi-
mation strategy for the dual of the maximum entropy problem,
by means of a fast gradient approximation.



Another approach to the approximate inference is the fac-
torization of the distribution into assumed-to-be independent
factors [17] that are limited in their modeling power to force
efficiency. Despite its limitations, this factorization strategy
has been successfully used for discovering concise and non-
redundant pattern sets [17], sampling of realistic categorical
datasets [22], and for the pattern compositions [5].

III. PRELIMINARIES

Before we introduce the concept of the maximum entropy
distribution, we start with notation. We consider binary data
X of n i.i.d. rows over d attributes in I, each sampled from
the set Ω = 2I of all events. We write 2A for the powerset of
any finite set A and

(
A
2

)
denotes the set of all pairs a 6= b from

A. The union of two disjoint sets A and B is A∪̇B. For any
n ∈ N we write [n] = {1, 2, . . . , n}. The indicator function is
1. All logarithms are to base 2, and we let 0 log 0 = 0.

A. The Maximum Entropy Probability Distribution

In general, we are interested in a distribution that are defined
over Ω, and that models a set S ⊆ Ω of observed events. Any
event x ∈ Ω has an associated expected observed frequency of
q(x) = |{y ∈ X | x ⊆ y}| / |X |. We want a distribution that
matches these expectations, i.e. E [x] = q(x) for any x ∈ S.
For a given set observation S ⊆ Ω and the corresponding q,
we define the set of feasible distributions as the polytope PS

{f ∈ Ω→ [0, 1] |Ef [x] = q(x) ∀x ∈ S ,
∑
f = 1} ,

that contains all, infinitely many distributions satisfying the
moment constraints, given that the observations are consistent.
Together, S and q are the statistics of the maximum entropy
distribution. This raises the problem of choosing a distribution.
A natural choice is a distribution that does not introduce
additional assumptions beyond the information that S and
q specifies. From an information theoretic point of view,
additional assumptions correspond to additional information.
We can measure the amount of information in a distribution
using Shannon entropy, H(p) = −

∑
x p(x) log p(x). The

lower the information content of a distribution p, the higher
its entropy. We can uniquely identify the feasible distribution
that makes the least additional assumptions as the one with
the highest entropy [4]

f ≡ arg max
f∈PS

H(f) , (1)

which is known as the Principle of Maximum Entropy [11].
In general this does not immediately provide a family of

distributions to use. In our case, however, as the constraints
of PS are linear, we know that f over x ∈ Ω has the form

f(x | S) = θ0

∏
yi∈S

θ
1[yi⊆x]
i ,

for appropriately chosen coefficients θ ∈ R|S|+1 [4]. Con-
veniently, optimizing θ is a convex problem, and hence we
can employ standard convex optimizers such as iterative scal-
ing [6]. We are specifically interested in inferring the expected

frequency p∗ for arbitrary x ∈ Ω—the frequencies of x ∈ S
are given, after all. To infer p∗ we have to sum the probabilities
of every possible y ∈ Ω that supports x,

Ef [x | S] =
∑
y∈Ω

f(y | S)1 [x ⊆ y] . (2)

IV. RELAXATION

We start with the inference of the expectation of the
maximum entropy distribution. The straightforward inference
of p∗ involves an exponential number of terms in the sum. It is
easy to see that many of these terms evaluate to the equivalent
probabilities and can be used to partition Ω into equivalence
classes Ω/∼ with x ∼ y ⇐⇒ f(x | S) = f(y | S) for
x, y ∈ Ω, such that the expectation is the weighted sum

p∗(x | S) = Ef [x | S] ≡
∑

[y]∈Ω/∼
x⊆y

|[y]| f(y | S)

over these classes. Mampaey et al. showed how to create
the set {[y] ∈ Ω/∼ | x ⊆ y} of equivalence classes that
support x and their weights from S, in a way that the size
scales exponentially only in S instead of I [17]. If S is
sufficiently large, the inference is, however, still intractable and
the question arises, how we can reduce the complexity without
constraining S. If there exists a valid factorization

∏
p∗i of

p∗ into independent factors p∗i , both terms are equivalent.
Conversely, we will not lose information by partitioning S
into independent sets Si ⊆ S. Whenever we can do so, the
complexity of each factor p∗i ( · | Si) scales only in Si, and if
the sizes of these Si ⊆ S are now considerably smaller than
S, we significantly reduce the complexity without loss.

Example 1. For example, the set I consists of letters from
a to f and S is {abc, cd , de, df , ef }. If we know that the
letters abc are independent of the rest, we can factorize S
into S1 = {abc} and S2 = {de, ef , df } without information
loss. The inference of the frequency of the pair ab consists
of marginalizing out c of factor S1 alone. But if S1 and S2

are not independent, for example if the pair cd is part of the
model, then we have to marginalize out c, cd , de, ef and df ,
which leads to the sum over 25 combinations.

The inference of the expectation p∗(x | S) becomes the
product

∏
Si
p∗(x∩si | Si) of individual maxent factors, where

the set si = ∪Si contains the elements that are associated
through Si. In the following, we generalize this observation
in terms of a factorization oracle ϕ.

Definition 1. For a given ϕ ∈ Ω→ 2S that is provided with
statistic S ⊆ Ω, the generalized factorization is

p̃(x | S) =
∏

Si∈ϕ(x)

p∗(x ∩ si | Si) ,

where the factors p∗( · | Si) have maximum entropy subject
to constraints imposed by Si (Eq. (1) and (2))

Example 2 (Static Factorization). In this example we assume
that the statistic S is given and factorization of p∗ is fixed. That
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Figure 1: Example Graphical Model For S = {abc, cd , de, df , ef }, denoted by the dotted edges, we visualize four possible
factorizations of p̃ using ϕstatic and ϕ for queries cd and abcdef (blue circles). By using the static factorization in Fig. 1c and
in Fig. 1a, we have to use of all available information in S, visualized by the fully connected component (solid lines). To
reduce the inference complexity, we use a relaxed factorization ϕ that omits the crossed-out links from S. For cd in Fig. 1a,
the relaxed inference is correct, since cd ∈ S. However, the relaxation of abc def in Fig. 1b trades inference complexity with
information loss, because we ignore the link between c and d, and hence we disregard potential co-occurrences.

means, we have access to the set of p∗-independent statistics
{Si}i, such that S =

⋃̇
i Si from which the static factorizer

ϕstatic(x) = {Si ∈ Φ|x ∩ si 6= ∅}

follows immediately. In theory, if Φ truly models the indepen-
dencies of the ground truth distribution, then using ϕstatic is
optimal. In practice, however, modeling the true factorization
can pose a significant problem: the complexity of inferring a
single maxent factor is still exponential in the size of Si. To
circumvent this issue we have to drastically limit the size of
each Si to be no greater than, say a user defined β ∈ N.

The static factorization lead to the problem that we have
to choose either between a tractable inference complexity or
a rich modeling of the data. For example, consider the static
factorization Φ that consists of the two independent factors
{abc} and {de, df, ef }. If we model an association between c
and d, we introduce a statistical dependency between the two
factors hence Φ would become {{abc, cd , de, df , ef }}. But
since the size of this factor exceeds the budget of β = 4, we
are therefore prohibited from modeling the dependency cd . In
the following, we introduce a relaxed, more flexible factorizer
that levitates this choice from us.

Example 3. In Fig. 1 we show the graphical representation of
p̃ for our example set S = {abc, cd , de, df , ef }. The dotted
edges visualize associated features. In this example we show
possible factorizations of the two queries abcdef and cd using
both static factorization (Fig. 1c) resp. (1a) and relaxed fac-
torization (Fig. 1d) resp. (1b). The static factorization involves
the complete graph and therefore, the graph is connected (solid
lines) and the inference is quite complex. If we deliberately
ignore dependencies, we can, however, partition the graph into
less complex-to-infer clique graphs by cutting out edges (the
crossed-out dotted edges).

Dynamic Factorization: In the example above, we dy-
namically adapted the factorization of p̃ to trade inference
complexity with information loss for the queries x ∈ Ω.
To formalize this idea, we assume that not all information
in statistics S is necessarily worthwhile to include in the
factorization of each x ∈ Ω. By this we mean that there is
a subset of S that contributes very little to no information

to the expected frequency of x. Similar to the example, by
only paying with a small information loss, we reduce the
inference complexity exponentially. More formally, we want
the factorization of p̃ with the smallest information loss

ϕdynamic(x) = arg min
Φ⊆2S

D(p∗‖p̃
Φ

) s.t. C(Φ) < β , (3)

while being tractable to infer for a β ∈ N, where D(q‖p) is
the Kullback-Leibler divergence

∑
x∈Ω qx log qx/px between

q and p and C(Φ) is the inference complexity
∑
Si∈Φ 2|Si|.

Directly solving Eq. (3) has, however, three obvious draw-
backs: Firstly, (i) the number of possible factorizations of
p̃ is exponential in the size of S. Secondly, (ii) each factor
is supposed to maximize its entropy. Thirdly, (iii) D is
computationally costly. Together, this has to be done for at
least each x ∈ X and hence, it is not a very practical factorizer.

In the following, we introduce an alternative that is inspired
by the above, but that does not suffer from these drawbacks.
Crucially, our ϕ must correctly factorize any x. That is, there
are no two factors Si and Sj in ϕ(x) that compute the
expectation of the same subset of x, i.e. x =

⋃̇
Si∈ϕ(x) x∩si .

Additionally, we want to constrain ϕ to be efficient to compute,
say ϕ ∈ O(poly(|Φ|)) for some set Φ (i, iii) and all the factors
have to be efficiently accessible in poly-time (ii). From the
latter we conclude that each factor Si ∈ ϕ(x) that is used
for any x has to be known beforehand, since maximizing the
entropy of a single factor has a complexity that is exponential
in Si. Therefore, it is necessary that ϕ selects an appropriate
set of factors from a known, predetermined set Φ of elementary
factors that are each maximally entropic.

Definition 2. For a given set Φ of elementary factors and
provided with a function c ∈ Ω → R, let ϕ ∈ Ω → 2Φ. For
each x ∈ Ω, we construct a factorization from Φ that

ϕ(x) = arg min
A⊆Φ

c(A) s.t.
⋃̇
Ai∈A

x ∩ ai = x .

To limit the number of omitted dependencies, we are
specifically interested in using the smallest number factors that
together cover any x ∈ Ω, i.e. the minimal sufficient coverage
of x, thus our objective c(A) is |A|. By using this objective
function, the problem of computing a factorization using ϕ is
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Figure 2: Example Factor Graph For the given elementary
factors Φ = {{abc}, {cd}, {def }}, we show a factor graph
representations of p̃ for inferring cd (left) and abcdef (right).
We represent each elementary factor Si ∈ Φ as a square and
highlight the factors that are in ϕ(x).

in fact a variant of the minimal exact set cover [13]. In contrast
to a static factorization, we allow for elementary factors that
are not necessarily disjoint. This means, we gained additional
flexibility and incorporate a richer statistic S in comparison
to the more constraints ϕstatic.

Example 4. In addition to S from our running exam-
ple, we are now also given a set Φ of elementary factors
{{abc}, {cd}, {def }}. Fig. 2 we depict a factor graph rep-
resentations of p̃ and visualize possible factorizations of two
different queries. Again, we trade the inference complexity
with the information loss, however this time not by removing
arbitrary edges from the graph, but by selecting a subset of
elementary factors (squares) from Φ. In this figure we show
that elementary factors are not necessarily disjoint. The factors
in ϕ(x), however, are always disjoint for any x.

To overcome issue (i) and (iii), we take the greedy approach
to set cover. Hence, the worst case complexity, O(2βk2),
of inferring the relaxed expectation is bounded by a term
that is exponential in the maximally allowed factor size β.
Disregarding set cover, the complexity is the same as of ϕstatic.

a) Estimator: The factorizer ϕ requires a set of under-
lying factors Φ ⊆ 2Ω to construct a factorization from. Now,
we find such a set that minimizes the divergence between p∗

and the relaxation p̃, such that the complexity is bounded.

Problem 1. For a given budget β ∈ N our problem is to

minimize
Φ⊆2Ω

D(p∗‖ p̃)

subject to |Si| ≤ β ∀Si ∈ Φ

fSi
← Eq. (1) w.r.t.Si ∀Si ∈ Φ

p̃(x) = q(x) ∀x ∈ ∪Φ (4)

where D is the Kullback-Leibler divergence between the given
target reference distribution p∗ and the relaxation p̃. Every fSi

is maximizing the marginal entropy according to Eq. (1). For
this, the set S = ∪Φ is the union of all elementary factors.

To solve this problem, we start with the mild assump-
tion that the support of p̃ subsumes the support of p∗,
i.e. supp p∗ ⊆ supp p̃. Then, we know that the divergence
D(p∗‖p̃) <∞ is finite [15] and therefore a solution must exist.
First, we show that there exist an approximation to p∗ that

models the latent S∗ = ∪Φ∗. Afterwards, we show that this
can be achieved efficiently by using empirical independencies.

Lemma 1. The probability that the divergence is sufficiently
small, converges to 1, i.e. Pr [D(p∗‖p̃) < ε]→ 1 where ε→ 0
for |Φ| → |S∗|.

Proof. Let Y ∼ p∗ and X ∼ p̃ two random variables. We
know that if the conditional entropy H(Y |X) is 0, the diver-
gence D(p∗‖p̃) is minimal. We know from Fano’s inequality
[3] that the conditional entropy H(Y | X)/ log |Ω| < Pr[E]
of Y |X is bounded from above by the error probability Pr[E]
for random variable E = X 6= Y . This means, as long as
Pr[E] converges to 0, the conditional entropy converges to 0
and hence our problem is learnable according to Lem. 1. Let
Sy = {y} be an elementary factor of y and let Φy ← Φ∪{y}.
From this it the distribution p∗y ∈ PSy

follows. For a ϕ that
selects from Φy , we therefore, know that p̃(y) matches p∗(y)
(cf. Eq. (4)). Hence, the probability Pr[E] shrinks and thus,
e.g. the set Φ = {{x}x∈S∗} is such a sequence of factors for
which Pr[E] converges asymptotically, given that the moment
constraints are consistent.

Now, we know that the problem is in principle learnable,
but the distribution p∗ is still unknown to us and therefore, we
want to make use of an empirical estimate instead.

Lemma 2. For a given set X of n samples {xi}i∈[n] from p∗,
the empirical estimator D̂n of Eq. (1) converges asymptotically
to D(q‖p̃), i.e. limn→∞ D̂n(p∗‖p̃)→ D(q‖p̃) .

Proof. We assume supp q ⊆ supp p∗. We write D(p∗‖p̃) =
D(p∗‖q) + D(q‖p̃) by using the information projection
[4]. Since X ∼ p∗, we know that asymptotically
limn→∞ D̂n(p∗‖q) → 0 holds. Thus, it is sufficient to show
limn→∞ D̂n(q‖p̃)→ D(q‖p̃) , which is trivially true.

Even by using the empirical estimator above, solving the
problem directly involves a very large 22Ω

search space. To
overcome this, we considerably reduce the search space, for
which we show that we can limit it to a subset of Ω of
statistically dependent elements in data X . To do so, we first
formalize what we mean by dependencies. We say that x ∈ Ω
is conditionally independent of y ∈ Ω, if

x ⊥⊥ y | Φ∗ ⇐⇒ @Sj ∈ Φ∗ : x ⊆ sj ∧ y ⊆ sj .

By definition there is no single maximum entropy factor Si
in the assumed-to-be given true factorization Φ∗, that contains
both x ∈ Ω and y ∈ Ω that are statistically independent in X .

Lemma 3. For a given set S∗ ⊆ Ω that contains all statistically
dependent sets of elements x ∈ Ω, there are no factors Si in
Φ∗ that contain x /∈ S∗.

Proof. Assume otherwise, that is there is a x = a∪b ∈ S∗ for
which a ⊥⊥ b | Φ∗. Thus, @Sab ∈ Φ∗ with a, b ∈ Sab. Hence,
p∗(a ∪ b) = p∗(a | Sa)p∗(b | Sb). By definition q(a ∪ b) 6=
q(a)q(b) is however true and from limn→∞ q(n) → p∗ follows
the contradiction. The other direction follows similarly.



b) Creating Factors: To conclude the above, instead of
minimizing Eq. (4) it suffices to construct a factorization Φ
that minimizes the divergence (Lem. 1, 3) directly from X
(Lem. 2). We assume that S ⊆ Ω is given to us and from that
S we now want to create a factorization. The trivial solution of
letting Φ = 2S is impractical, as many factors are not used by
ϕ. Instead, we create Φ in an iterative process that is aware of
ϕ. For this, we iteratively insert a new factor into Φ for each
pattern x ∈ S. Starting with one pattern x, we want to create
a new factor that minimizes the divergence between q and p̃,
cf. Eq. (1). Firstly, we know from Eq. (4) that the estimate
p̃(x) exactly match the observation q(x) if x is present in
Sx and therefore minimizes the point-divergence. Secondly, to
ensure that p̃ is as informative as without Sx, we include all
the previously used information to infer p̃(x) into that factor.
That information was provided by ϕ(x), which in total leads
to the factor Sx = ϕ(x)∪{x} that is tailored towards x. This
Sx can however exceed the budget β. To counteract this, we
relax the new factor by minimizing

Sx ← arg min
S⊆Sx,|S|≤β

DΩx
(q‖p∗

S
) (5)

the divergence, subject to our budget β, where DΩi
is the

Kullback-Leibler divergence with respect to the partition Ωi ⊆
Ω that factor Sx supports. Because β is small in practice and
the divergences is submodular [14], we solve Eq. (5) greedily.
Finally, we insert this relaxed factor into the set of factors Φ.

V. EXPERIMENTS

In the experiments, we evaluate the factorization on syn-
thetic, as well as 58 real-world datasets that together span
a wide variety of domains, sizes, and dimensionalities. We
implemented our method in C++, ran experiments on an Intel
Xeon E5-2643 CPU, and report wall clock time. We provide
the source code, datasets, synthetic dataset generator, and
additional information needed for reproducibility.1

A. Synthetic Data

We start with verifying the factorization on a known ground-
truth, for which we generate synthetic data. To do so, we
randomly sample the set S∗ of 2 048 patterns over 256 and
corresponding frequency q. In each of the 50 trials, we inde-
pendently draw 4 096 points from q under an additive noise
term of 5%. Even though we have access to the true pattern
sets S∗, the computation of the true likelihood is intractable
for p∗. Therefore, we compare the divergence between p∗ or p̃
and empirical frequencies q for S∗. In Fig. 3 for a budget of up
to 12, the vanilla distribution p∗ cannot model more than 40–
80 patterns from S∗, without considerable runtime cost. For
the same budget, we observe the exponential runtime growth
of the relaxation significantly later at around 1 800 patterns.

On the left, we see that for smaller β the statically factorized
p∗ converges early, since it has no factors with a remaining
budget left. In these experiments, p̃ can, however, incorporate
the full ground truth set of patterns S∗ and hence, is capable

1eda.mmci.uni-saarland.de/reaper
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Figure 3: Scalability on Synthetic Data We show the diver-
gence (left) of p̃ and p∗ to frequencies q and the inference
time (right) for different β and increasing model size |S|.
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Figure 4: Pattern Mining We show the BIC ratio in terms of p̃
(lower is better) for patterns discovered by OPUS, IIM, MTV
and REAPER, and their runtime (milliseconds, log scale).

of reaching the minimal divergences of 0. In the case of p̃,
we can further observe that a strict limitation of the budget
does not have a significant impact on the divergence between.
Even for the smallest budget, the relaxation p̃ is overall less
constrained than p∗ for a larger β.

B. Real-World Datasets

Now, we test p̃ on real-world datasets. For a fair comparison
we measure the ratio Λ = `(Φ)/`({{x ∈ I}}) of the BIC of
Φ to the BIC of independence model (resp. for p∗)

`(Φ̂) = log |X |
∑
Si∈Φ̂ |Si| /2−

∑
x∈X log p̃(x; Φ̂) ,

and the time to compute this score. BIC scores that are close,
generally speaking mean that the corresponding distributions
model the data similarly well.

a) Pattern Mining: We start with applying the relaxation
to pattern mining. For this, we have adapted DESC [5], whose
distribution we replace with p̃. To account for the usage of
a pattern x, we scale DESC’s heuristic h by the usage. That
is, for each candidate x, we create a factor Sx and count the
number of times it is used by the factorizer ϕx, which has
access to Φ ∪ Sx (cf. Eq. (5)), i.e. the heuristic becomes

h(x) · |{y ∈ X | Sx ∈ ϕx(y)}| .

We call the result REAPER, the relaxed entropy accelerated
pattern miner. We compare this method to the pattern miner
OPUS [21], IIM [9] and MTV [17], by measuring the BIC

eda.mmci.uni-saarland.de/reaper
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Figure 5: Approximation For 55 real-world datasets, we show
the BIC ratios Λ and the time t (milliseconds, log scale) to
compute these, for the equally parameterized models p̃ and p∗.

ratio. For OPUS we choose k to be the same as the number
of REAPER’s discoveries. In Fig. 4 we quantify the BIC ratios
of all methods in terms of the relaxed distribution p̃. In this
figure, we see that REAPER results in patterns which in most
cases exhibit a higher likelihood than the competitors.

b) Approximation: To study how well the relaxation fits
the data, we compare the likelihoods of p̃ to p∗. For this, in
each experiment, we discover and fix the set S using REAPER
and use that set to parameterize these distributions, which we
give a budget β of 12. In Fig. 5 we show the BIC scores of p̃
and p∗ and there we can see that both distributions model the
data similarly well (diagonal), however, we observe that the
relaxation is almost always significantly faster to compute.

c) Classification: As an additional metric, we compare
the binary or multi-class prediction accuracy of p̃ and p∗ on
25 labeled datasets. For this, we introduce the Bayes classifier

arg maxi p̃i(x | Φi) ,

that assigns the likeliest label according to the distributions p̃i
for the classes i ∈ [m] (resp. p∗). We perform a 5-fold stratified
cross-validation. Per fold, we discover the set of factors Φi
using REAPER for each class i in the randomly sampled
training (80%) data (resp. DESC) and use Φi to parameterize
the distribution p̃i of class i (resp. p∗i ). Then, we compute
the true positive rate (tpr) on the remaining test data (20%)
using the Bayes classifier w.r.t. p̃ or p∗. In Fig. 6 we report
the average tpr and average test time, which demonstrates that
the relaxation p̃ classifies as well, however, in much less time.

VI. DISCUSSION & CONCLUSION

We introduced the relaxed maximum entropy distribution
based on a generalized, dynamic factorization that can trade
inference complexity with information loss, and results in a
distribution that has higher statistical modeling power than
exact models. We provided a practical instantiation that builds
on set cover principles, applied this relaxation to classification
or pattern mining and showed experimentally that it works well
in practice. There are multiple open research questions, such
as a factorization that considers the complexity of a factor or
applying this principle to approximate graph counting.
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Figure 6: Classification On 25 datasets, we cross-validate the
p̃ or p∗ based classifier and show the true positive rate and the
classification time t (microseconds, log scale) of the test data.
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APPENDIX

A. Reproducibility

In our experiments, we compare against OPUS [21],
MTV [17], IIM [9] and DESC [5], for which we use the origi-
nal implementation of the respective authors. OPUS discovers
the top-k self-sufficient itemsets for a user defined k, that we
set to the number of patterns that REAPER has discovered.
In general, we use the default values for hyper-parameters
suggested by the authors. For example, for IIM we limit the
number of EM iterations to 1 000 and the number of structure
steps to 100 000, as the authors have used as the default values
of their implementation [9]. We limited all methods to 4 hours
per dataset and in case they have not finished earlier, we report
the results that have been achieved within that time frame. To
compare the results of the pattern miner, we first discover a
set of patterns using these methods. Next, from that, we create
a relaxed maximum entropy distribution using our iterative
approach that we have described in Sec. IV-0b. Note that the
statically factorized distribution cannot incorporate all these
patterns into the model, due to its limited budget. To compare
the informativeness of the results of the pattern miner, we
compute the BIC score using that model.

B. Datasets

All datasets that we have used in our experiments are
publicly available. We have removed stop words, lemmatized
and binarized the AG News text corpus and for the AG Head-
lines we have only considered news titles.2 Similarly, we have
lemmatized and binarized the two versions of the CORD 19
dataset by extracting the abstracts from the CORD 19 open re-
search dataset.3 The DQ dataset of lemmatized Deep-Learning
and Quantum-Theory ArXiv abstracts can be found in the
supplementary material.4 To reduce the number of attributes
of the Instacart dataset, we have combined products from the
same category, e.g. we merged Thin Spaghetti with Regular
Spaghetti into the Spaghetti meta category.5 We have used
the Chainstore, POWER C, PAMAP datasets from the SPMF
dataset collection,6 and we have taken Chess, Connect, Mush-
room, Pumsb, Kosarak, Retail, Accidents from the Itemset
Mining Dataset Repository.7 All the remaining datasets are
from the UCI Machine Learning Repository8 or from the
LIBSVM repository.9 We binarized each real valued attribute
by binning it into 10 bins of equal width, and we mapped each
categorical and ordinal attribute to multiple binary attributes,
which is often referred to as ‘one-to-k’ encoding.

In Table I, we provide basic statistics about the datasets and
the minimal support we have used in our experiments.

2di.unipi.it/∼gulli/AG corpus of news articles
3kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
4eda.mmci.uni-saarland.de/reaper
5instacart.com/datasets/grocery-shopping-2017
6philippe-fournier-viger.com/spmf
7fimi.ua.ac.be/data
8archive.ics.uci.edu/ml
9csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

Dataset |X | dimX Ex∈X [|x|] density classes

Higgs 11000000 247 28.00± 0.00 0.1133 2
SUSY 5000000 178 18.00± 0.00 0.1011 2
Instacart 2620570 1235 3.14± 2.18 0.0025 1
Chainstore 1112949 46086 7.23± 8.91 0.0002 1
POWER C 1040000 125 7.00± 0.00 0.0560 1
KDD Cup 99 1000000 135 16.00± 0.00 0.1185 1
PAMAP 1000000 82 23.93± 0.73 0.2919 1
Kosarak 990002 41270 8.10± 23.62 0.0002 1
Covtype 581012 64 11.95± 0.23 0.1866 2
Record Link 574913 27 10.00± 0.00 0.3704 1
Accidents 340183 468 33.81± 2.94 0.0722 1
COD RNA 271617 16 8.00± 0.00 0.5000 2
Skin 245057 12 4.00± 0.06 0.3330 1
AG Headlines 127600 5243 3.09± 1.49 0.0006 4
AG News 127600 11489 13.63± 4.05 0.0012 4
Retail 88162 16470 10.31± 8.16 0.0006 1
Connect 67557 129 42.00± 0.00 0.3256 3
BMS WV 1 59602 497 2.51± 4.85 0.0051 1
BMS WV 2 77512 3340 4.62± 6.07 0.0014 1
Pumsb 49046 2113 74.00± 0.00 0.0350 1
Adult 48842 97 13.87± 0.48 0.1430 2
Plants 34781 69 8.69± 13.11 0.1259 1
CORD 19 32915 3517 62.67± 31.77 0.0179 1
Chess 28056 51 6.00± 0.00 0.1176 18
Letter Recognition 20000 102 16.00± 0.00 0.1569 26
US Census 13369 392 68.00± 0.37 0.1735 1
Nursery 12960 30 8.00± 0.00 0.2667 5
Pen Digits 10992 76 16.00± 0.00 0.2105 10
DQ 9993 434 22.30± 10.40 0.0514 1
Mushroom 8124 117 22.00± 0.00 0.1880 2
Breast Cancer 7325 397 11.67± 13.06 0.0294 2
Page Blocks 5473 39 10.00± 0.00 0.2564 5
DNA 5186 180 45.53± 5.22 0.2530 3
Waveform 5000 98 21.00± 0.00 0.2143 3
DNA Amplification 4587 391 5.78± 8.40 0.0148 1
Hypothyroid 3247 86 43.19± 0.39 0.5022 1
Led 7 3200 19 7.00± 0.00 0.3684 10
kr-vs-kp 3196 73 36.48± 0.50 0.4998 1
Splice 3190 287 60.73± 0.44 0.2116 1
Mammals 2183 121 24.81± 8.25 0.2050 1
German Credit 1000 110 38.70± 0.46 0.3518 1
Tic Tac Toe 958 27 9.74± 0.44 0.3606 1
Anneal 898 71 13.31± 1.45 0.1874 5
ICDM 859 3933 47.67± 14.32 0.0121 1
Diabetis 768 38 8.00± 0.00 0.2105 2
Australian Credit 653 124 51.53± 0.50 0.4155 1
Soybean 630 50 16.93± 0.25 0.3387 1
Vote 435 48 16.33± 0.47 0.3403 1
Ionosphere 351 155 34.00± 0.00 0.2194 2
Primary Tumor 336 31 15.79± 0.41 0.5092 1
Heart 303 50 12.98± 0.14 0.2596 5
Heart (Cleveland) 296 95 45.52± 0.50 0.4792 1
Audiology 216 146 67.13± 0.34 0.4598 1
Wine 178 65 13.00± 0.00 0.2000 3
Hepatitis 155 52 18.92± 1.83 0.3639 1
Iris 150 19 4.00± 0.00 0.2105 3
Lymph 148 68 27.72± 0.45 0.4077 1
Zoo 101 36 16.06± 0.24 0.4461 1

Table I: Datasets We show the number of rows, dimensions,
number of classes, the average row size, and the overall density
of the dataset that we used in our experiments.

di.unipi.it/~gulli/AG_corpus_of_news_articles
kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
eda.mmci.uni-saarland.de/reaper
instacart.com/datasets/grocery-shopping-2017
philippe-fournier-viger.com/spmf
fimi.ua.ac.be/data
archive.ics.uci.edu/ml
csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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