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Abstract
Change detection in multivariate time series has applications in
many domains, including health care and network monitoring. A
common approach to detect changes is to compare the divergence
between the distributions of a reference window and a test window.
When the number of dimensions is very large, however, such a
naı̈ve approach has both quality and efficiency issues: to ensure
robustness the window size needs to be large, which not only leads
to missed alarms but also increases runtime.

To this end, we propose LIGHT, a linear-time algorithm for ro-
bustly detecting non-linear changes in massively high dimensional
time series. Importantly, LIGHT provides high flexibility in choos-
ing the window size, allowing the domain expert to fit the level of
details required. To do such, we 1) perform scalable PCA to reduce
dimensionality, 2) perform scalable factorisation of the joint distri-
bution, and 3) scalably compute divergences between these lower
dimensional distributions. Extensive empirical evaluation on both
synthetic and real-world data show that LIGHT outperforms state of
the art with up to 100% improvement in both quality and efficiency.

1 Introduction
Change detection in time series is an important task and
has applications in many areas, e.g. health care and network
monitoring [1,10,17]. In short, it is concerned with detecting
time points at which important statistical properties of the
time series change. To do so, a common approach is
to compare the divergence between data distributions of a
reference window and a test window. Traditionally, this
works well for univariate time series [3, 10, 29]. Time series
nowadays, however, are massively high dimensional, e.g.
those from human physical activities have more than 5 000
dimensions [23], while those from online URLs have more
than 50 000 dimensions [18]. With high dimensionality,
existing work has quality and efficiency issues.

In particular, techniques working directly with distribu-
tions of all dimensions, such as [5,8,9], are prone to the curse
of dimensionality. Naı̈vely, this issue seems to be resolved
by using a large window size. A large window, however,
in general increases runtime, causes high delay, and misses
alarms [1]. More recent work [11, 22] alleviates the issue by
principal component analysis (PCA). Using PCA they map
data in reference and test windows to a lower dimensional
space on which divergence score is computed per individual
eigenvectors. While this in theory can avoid high dimension-
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ality, it has three pitfalls. First, the traditional PCA method
is cubic in the number of dimensions. While faster meth-
ods to compute PCA do exist [6, 16, 24, 27], their effect on
change detection has not been investigated. Second, to en-
sure the stability of covariance matrices that PCA uses, these
methods need a large window size [13]. Third, by assum-
ing statistical independence in the PCA space, they may miss
complex changes over correlations of dimensions. Thus, de-
tecting changes in massively high dimensional time series
still is an open problem.

In this paper, we aim at addressing this issue. We do
so by proposing LIGHT, for linear-time change detection in
high dimensional time series. In short, LIGHT overcomes
the drawbacks of existing techniques by a three-step ap-
proach. First, we perform scalable PCA mapping of the two
windows using matrix sampling [6]. Through matrix sam-
pling, we allow for medium to small window sizes. After
PCA mapping, we obtain data embedded in a much lower-
dimensional space. To further increase robustness of di-
vergence assessment and flexibility in choosing the window
size, we factorise the joint distribution in the transformed
space to lower dimensional distributions. Finally, we pro-
pose a divergence measure that computes change score us-
ing these distributions. Importantly, our measure has the
non-negativity property of well-known divergence measures.
Further, it allows non-parametric computation on empirical
data in closed form. It also permits incremental calculation
and hence is suited to the setting of time series (but not data
streams; making LIGHT applicable to data streams is future
work). Our analysis and extensive experiments show that
LIGHT is very scalable and achieves high quality.

The road map is as follow. In Sect. 2, we give an
overview of LIGHT. In Sect. 3, we provide its details and
analyse its scalability. In Sect. 4, we review related work.
In Sect. 5, we report empirical study. We round up with a
discussion in Sect. 6 and conclude in Sect. 7. For readability,
we postpone all proofs to the Appendix.

2 Overview
Consider an n-dimensional real-valued time series
{X(1),X(2), . . . ,X(M)}. At each time instant t ∈ [1,M ]
the sample X(t) consists of n values {X1(t), . . . , Xn(t)}
where Xi(t) corresponds to dimension Xi (i ∈ [1, n]).



We assume that Xi(t) ∈ [vi,Vi] for all t ∈ [1,M ]. Note
that when the dimension scales are very different, we can
normalise to bring them to comparable domains. Here we
use different scales to provide more flexibility.

We give the pseudo-code of LIGHT as Algorithm 1. It
works as follows. First, we form a reference window Wref

with size |Wref | = m (Line 2). Next, we transform Wref

toWtrans
ref of lower dimensionality and extract structure Sref

from Wtrans
ref (Line 3). We will explain the rationale of this

step shortly. For each new sample X(t) of the time series,
we form a test windowWtest = {X(t−m+ 1), . . . ,X(t)}
(Lines 4 and 7). Next, we apply toWtest the transformation
that we perform on Wref to obtain Wtrans

test ; we also extract
structure Stest based on Sref . Both steps are described in
Lines 5 and 7. We define the change score as the divergence
between (Wtrans

ref ,Sref ) and (Wtrans
test ,Stest) (Line 8). When

a change indeed happens (Line 9), we report it (Line 10)
and restart the process. Note that in this work, we do not
focus on handling time-dependent information, e.g. auto-
correlation. Such information can be captured by patching
multiple windows as done in [9, 17].

In LIGHT, we transformWref by mapping it to another
space S of k � n dimensions. We achieve this with scal-
able PCA using matrix sampling [6]. The purpose of this
step is multi-fold. First, in many domains the the default di-
mensions may not reflect the true physical dimensions [14];
hence a transformation is done to alleviate this issue. Sec-
ond, when n is very large we need to choose a large window
size m to ensure the robustness of divergence computation.
A large m however causes high delay and misses alarms [1].
Hence, dimension reduction is necessary to ensure quality.
Third, by reducing the number of dimensions and allowing a
smaller window size we are able to boost efficiency.

The usual next step would be to perform divergence as-
sessment on S. Working with k-dimensional joint distribu-
tions however may still expose us to the curse of dimension-
ality [21]. For instance, when n = 50 000 and k = 100 it
is true that k � n; yet, to effectively process a joint dis-
tribution with k = 100 dimensions we may still require a
moderate m. To tackle this we propose to factorise the joint
distribution of Wtrans

ref to a combination of selected lower
dimensional distributions, preserving non-linear structures,
e.g. non-linear correlations among k dimensions of S. The
set of lower-dimensional distributions makes up structure
Sref in our algorithm. The change score at time instant t
is computed based on these low dimensional distributions.
Hence, we achieve three goals at the same time: (1) more
flexibility in setting m, (2) maintaining robustness of diver-
gence assessment, and (3) detecting changes in complex non-
linear structures. Note that the linear transformation with
scalable PCA and the construction of Sref could be perceived
as compression of the data preserving first-order and higher-
order dependencies, respectively.

Algorithm 1 LIGHT

1: Set ts = 0
2: SetWref = {X(ts + 1), . . . ,X(ts +m)}
3: Set [Wtrans

ref ,Sref ] = transformAndExtract(Wref )
4: SetWtest = {X(ts +m+ 1), . . . ,X(ts + 2m)}
5: Set [Wtrans

test ,Stest ] = apply(Wtest ,Wtrans
ref ,Sref )

6: for each new sample X(t) of the time series do
7: UpdateWtest ,Wtrans

test , and Stest by replacing X(t−
m) by X(t)

8: Set score = div(Wtrans
ref ,Sref ,Wtrans

test ,Stest)
9: if change(score) then

10: Report a change at time instant t and set ts = t
11: Repeat from step 2
12: end if
13: end for

For divergence assessment, we propose a new diver-
gence measure that judiciously combines component lower
dimensional distributions to produce the change score for
the original distributions. Our measure has the important
non-negativity property of popular divergence measures. In
addition, it allows computation on empirical data in closed
form. It also facilitates incremental computation and hence
is suitable for time series application. Through the develop-
ment of our measure, we show that when the dimensions in
S are indeed statistically independent, LIGHT reduces to ex-
isting PCA-based change detection methods [11, 22], which
focus exclusively on linear relationships. Thus, LIGHT is
more general, i.e. it can uncover different types of change,
be them linear or non-linear.

Having given an overview of LIGHT, in the next section
we provide its details and explain why it is a highly scalable
solution for very high dimensional time series.

3 Details of LIGHT

In this section we provide the details of LIGHT, namely
the data transformation, the distribution factorisation, the
divergence measure, and the change score thresholding.

3.1 Data Transformation Following the previous section,
we perform PCA on the reference window Wref with m
points and n dimensions. For simplicity we use A to denote
the data of Wref ; it has m rows and n columns. W.l.o.g.,
we assume that A is centered. The usual procedure would
be to (1) solve the eigendecomposition problem on ATA,
and (2) use the top eigenvectors corresponding to the top
eigenvalues to transform A. This costs O(mn2 +n3). When
n is very large this complexity is prohibitive for large scale
processing. Further, when n is large we need to choose a
large window sizem; otherwiseATA becomes very unstable
making PCA results unreliable [13].

We overcome this by matrix sampling. In short, matrix



sampling is concerned with sampling rows/columns of matri-
ces to reduce the computational cost of common procedures,
e.g. matrix multiplication and SVD. These approximations
come with error bounds that hold with high probability. Fur-
ther, as the sampled submatrix has fewer columns the results
are also more stable [6]. Matrix sampling has been recently
applied in the context of data mining [15]. Here, we em-
ploy the technique in [6] as it allows us to avoid fixing a
priori the number of dimensions k to be kept. This method
essentially performs approximate singular value decompo-
sition (SVD). Recall that SVD finds matrices U , Σ, and V
such that A = UΣV T . Here, U ∈ Rm×m and V ∈ Rn×n
contain the eigenvectors of AAT and ATA, respectively.
Σ = diag(λ1, . . . , λd) is a diagonal matrix of size m × n
where d = min{m,n}. The singular values λ1 ≥ . . . ≥ λd
of A are also the non negative square roots of the eigenvalues
of both AAT and ATA. Finding the exact solution of SVD,
like PCA, costs O(mn2 + n3). With matrix sampling we ob-
tain high quality approximate solution of SVD in much less
time. The details are as follows.

We write the column j of A as A(j) for j ∈ [1, n]. First,
we sample with replacement c� n columns of A according
to their relative variance |A

(j)|2
||A||2F

where |A(j)| is the squared

norm of vector A(j) and ||.||F is the Frobenius norm. This
forms a matrix C ∈ Rm×c. Second, we perform PCA on
CTC to extract its top k ≤ c eigenvectors {y1, . . . , yk}
corresponding to its top eigenvalues α1 ≥ . . . ≥ αk. The
value of k is determined by how much variance of C to
preserve; usually 90% to 99% suffices [14, 22]. Next, we
form matrix Uk ∈ Rm×k where each column U (i)

k = Cyi√
αi

,
and matrix Σk = diag(

√
α1, . . . ,

√
αk) of size k × k. Let

Vk ∈ Rn×k be a matrix whose columns contain the top k
eigenvectors of ATA. According to [6], Ak ≈ UkΣkV

T
k

where Ak is the best rank k approximation of A w.r.t. both
||.||F and ||.||2 (spectral norm). By definition, the PCA-
transformed data Wtrans

ref is given by AVk = AkVk =
UkΣk. We also need to compute Vk to transform the test
window Wtest later. It holds that Vk = AT (UkΣk) =
AT (AVk). The original algorithm is stochastic. We can
make it deterministic by picking c columns of A with largest
relative variance; to break ties we use a canonical order.

The cost of approximating top k eigenvectors Vk of
ATA is O(mc2 + c3). The cost of computing AVk is
O(mk2). The cost of computing Vk is O(mnk). So the total
complexity is O(mc2 + c3 +mk2 +mnk) with k ≤ c� n,
which can be simplified to O(mc2 + mnk) as we choose
c ≤ m. With reasonable c and small m the accuracy
is increased [6], i.e. small window size is favored. The
complexity of this sampling algorithm is on par with other
sampling methods, such as [15, 24]. While these techniques
require us to provide the final dimensionality k, our method
permits to adapt k to the current reference window A =

Wref . Overall, by matrix sampling we are able to boost
efficiency and gain stability [6], as we perform PCA on CTC
where c � n instead of ATA. In other words, besides
error bounds that hold with high probability the approximate
solutions will tend to be more stable to high dimensionality.

3.2 Distribution Factorisation To further increase ro-
bustness of divergence assessment and flexibility in choos-
ing the window size, we factorise joint distribution in the
transformed space S to low dimensional distributions. We
accomplish this with graphical modeling [30,31], a powerful
approach for this purpose. We denote the k dimensions of S
as {Y1, . . . , Yk}. Assume that we have a graph G = {V, E}
where V = {Y1, . . . , Yk}; two dimensions Yi and Yj not con-
nected by an edge are regarded as conditionally independent
given all other dimensions V \ {Yi, Yj}. Given such a graph
G, one can factorise the joint distribution p(Y1, . . . , Yk) of
Wtrans

ref by first finding special structures (e.g. cliques or con-
nected components) of G, and then using the distributions of
these structures to estimate p(Y1, . . . , Yk). Of course, the
more complex the structures the better the estimation. Nev-
ertheless, complex structures tend to contain many dimen-
sions, causing quality and efficiency issues for divergence
computation. We achieve a more balanced solution by using
the edges of G, which is also a good alternative to factorise
p(Y1, . . . , Yk) [30, 31]. Under this model

p(Y1, . . . , Yk) =

∏
(Yi,Yj)∈E

p(Yi, Yj)∏
Y ∈V

p(Y )deg(Y )−1

where deg(Y ) is the degree of Y in G. One can see
that the joint distribution is now represented by 1-D and
2-D distributions, further easing the ‘pressure’ on picking
window size m. So far, we assume that G is available. Now
we describe how to obtain it fromWtrans

ref .
Our solution consists of three steps: 1) computing

pairwise correlation score of Yi and Yj with i 6= j –
the higher the score the more correlated, 2) initialising G
containing all dimensions and having an edge between every
two dimensions – the weight of each edge is their correlation
score, and 3) simplifying G to one of its maximum spanning
tree. Note that the simplified G has (k − 1) edges.

Recall that our goal is to detect non-linear changes. To
this end, for the first step we choose the quadratic measure
of dependency [26] as it captures non-linear correlations, is
non-parametric, and permits computation on empirical data
in closed form. In short, under this measure the correlation
between Yi and Yj is given by

corr(Yi, Yj) =

∫ ∫
(P (yi, yj)− P (yi)P (yj))

2
dyidyj

where P (.) denotes cumulative distribution function (cdf).
Computing this measure for all dimension pairs takes



O(m2k2). To boost efficiency, similar to [19] we apply
AMS Sketch [2]. In short, to compute corr(Yi, Yj) we pre-
compute the sketches of both Yi and Yj by projecting their
realisations onto multiple random vectors u ∈ {−1,+1}m.
We then use the sketch values to estimate corr(Yi, Yj). The
estimate is unbiased and its error is bounded [2]. The
more random vectors used the better the estimate. We find
that using O(k) vectors suffices. The time complexity of
computing pairwise correlation scores is thus reduced to
O(mk2) [19]. To make our method deterministic we gen-
erate the vectors in advance and reuse whenever needed.

For the third step, as G initially is dense we employ
the method proposed in [7]. It is deterministic and costs
O(k2). The outcome of this step is the set of 1-D and 2-D
distributions taken from the maximum spanning tree. These
distributions also constitute the structure Sref ofWtrans

ref .
The overall complexity of distribution factorisation is

O(mk2), i.e. linear in m and independent of n.

3.3 Divergence Computation For each test window
Wtest we first map it to S using Vk (see Section 3.1). Then,
we use Sref to extract Stest , i.e. the set of 1-D and 2-D dis-
tributions ofWtest corresponding to those in Sref . Our goal
now is to compute the divergence score

score = div (p(Y1, . . . , Yk) || q(Y1, . . . , Yk))

where p(Y1, . . . , Yk) and q(Y1, . . . , Yk) are the joint distribu-
tions ofWref andWtest , respectively. One important ques-
tion to address here is: How to do this using two sets of
distributions Sref and Stest? We answer this question based
on the following observations.

LEMMA 3.1. Let KL (p(.) || q(.)) be the Kullback-Leibler
divergence between p(.) and q(.). Using Sref and Stest we
have KL (p(Y1, . . . , Yk) || q(Y1, . . . , Yk)) =∑

(Yi,Yj)∈E
KL (p(Yi, Yj) || q(Yi, Yj))

−
∑

Y ∈V:deg(Y )>1

(deg(Y )− 1)KL (p(Y ) || q(Y ))

Proof. We postpone the proof to the online Appendix.

Lemma 3.1 tells us that score w.r.t. KL measure is
equal to the sum of divergence scores of 2-D distribu-
tions (called 2-D divergence scores) offset by those of
1-D distributions (called 1-D divergence scores). Here,
KL (p(Yi, Yj) || q(Yi, Yj)) stands for the magnitude of
changes in Yi, Yj , and their dependency. Thus, the sum of
2-D divergence scores stands for the magnitude of changes
in the involved dimensions and their dependencies. The sub-
traction by 1-D divergence scores is to reduce the impact of
dimensions contributing to more than one 2-D score term.

Though KL divergence features a nice computation of
score based on 1-D and 2-D distributions in Sref and Stest ,

these distributions need to be estimated, e.g. parametrically
or by kernel density estimation [25]. Here, we aim at a
purely non-parametric approach to maintain the exploratory
nature of LIGHT. Thus, we propose to generalise the result
in Lemma 3.1 to divergence measures other than KL. In
particular, for any measure div we propose to set score to

δ ×

( ∑
(Yi,Yj)∈E

div (p(Yi, Yj) || q(Yi, Yj))

)
−

∑
Y ∈V:deg(Y )>1

(deg(Y )− 1)div (p(Y ) || q(Y ))

where δ is a regularisation factor, which is to guarantee that
score is non-negative. With our generalisation we give way
to applying other non-parametric instantiations for div , e.g.
the one in [20] with empirical computation in closed form,
while still upholding the non-negativity property of KL
divergence. An additional benefit of δ is that it can make the
influence of Y with deg(Y ) > 1 on score more prominent,
i.e. more impact is given to the dimensions correlated to
multiple other dimensions.

Before introducing the setting of div we show that PCA-
based change detection methods [11, 22] – using the pre-
vious two steps of our framework – also generalise from
Lemma 3.1, yet in a more restrictive manner. In particular,

these methods estimate score by
k∑
i=1

div (p(Yi) || q(Yi)) or

max
i∈[1,k]

div (p(Yi) || q(Yi)); note that the two forms are simi-

lar. From Lemma 3.1 we see that if p(Yi, Yj) = p(Yi)p(Yj)
and q(Yi, Yj) = q(Yi)p(Yj) for (Yi, Yj) ∈ E , then score

under KL is equal to
k∑
i=1

KL (p(Yi) || q(Yi)). Thus, PCA-

based methods [11, 22] also generalise from KL divergence;
however, they impose two additional assumptions that Yi and
Yj where (Yi, Yj) ∈ E are statistically independent under
both the data ofWtrans

ref andWtrans
test . We in turn do not im-

pose these restrictions and can capture correlation in the PCA
space S, i.e. we provide a more general solution.

Choosing div . We use the quadratic measure of distribution
divergence [20]. It is purely non-parametric and its empirical
computation is in closed form. Under this measure

div (p(Y ) || q(Y )) =

∫
(P (y)−Q(y))

2
dy

and div (p(Yi, Yj) || q(Yi, Yj)) is defined similarly. We set

δ = 2

√
n∑
i=1

max{v2
i ,V

2
i } following our below lemma.

LEMMA 3.2. Setting div to the measure in [20] and δ as
above, it holds that score ≥ 0 with equality iff p(Y1, . . . , Yk)
and q(Y1, . . . , Yk) under the factorisation model (cf., Sec-
tion 3.2) are equal.



Proof. We postpone the proof to the online Appendix.

Complexity analysis. The cost of computing score for
initial Wref and Wtest or after every change is O(m2k).
The cost of computing divergence score for each new sample
of the time series is O(mk). In case a large window size
m is required, e.g. due to the application scenario, we can
further boost the efficiency of our method by sampling with
replacement the data ofWtrans

ref andWtrans
test .

3.4 Change Score Thresholding We perform an adaptive
thresholding scheme to decide when a change indeed hap-
pens. The scheme we consider is the Page-Hinkley test,
which has been used in [22]. Under this test we keep track of
the past change scores corresponding to time instants with-
out change. For a new time instant, we assess how much its
change score deviates from these historical scores and raise
the flag when the deviation is large (w.r.t. an easy-to-adapt
threshold). More details are in [22].

3.5 Summing Up On a time series with r changes, LIGHT
costs O

(
(mc2 +mnk +m2k)r + (M − r)mk

)
. In our

experiment m = O(n), which simplifies the complexity to
O
(
(c2 + nk)mr + (M − r)mk

)
time.

4 Related Work
In this work, we focus on change detection time series.
For comprehensiveness, we however review related work on
both data streams and time series. Being an important task
of data mining, change detection on time series and data
streams has been studied extensively and there have been
many related methods proposed in the literature [1, 3–5, 8–
12, 17, 22, 28, 29]. In this work, we target change detection
in high dimensional time series, thus in the following we
discuss [1, 4, 5, 8, 9, 11, 17, 22, 28] in more details.

PCA-based change detection is studied in [11, 22].
Kuncheva and Faithfull [11] propose to use eigenvectors
with small eigenvalues for transformation. Qahtan et al. [22]
in turn show theoretically and empirically that eigenvectors
corresponding to large eigenvalues instead are more relevant.
Both methods apply traditional PCA on original reference
windows and have cubic runtime in the number of dimen-
sions n. Further, they may miss complex changes due to the
assumption that dimensions in the transformed space are in-
dependent, i.e. dimensions in the original space have linear
correlations only.

Change detection based on estimating the ratio between
distributions of reference and test windows is introduced
in [9, 17]. The main idea is to directly approximate this ra-
tio by kernel models without approximating the two distri-
butions. This procedure implicitly assumes that data is uni-
formly distributed in the n-dimensional space. When n is
large, we need a large window size m to fill in this space to

uphold this assumption. Computing the distribution ratio an-
alytically costs O(m3). For efficiency purposes the window
size m must hence be kept small.

Song et al. [28] propose a divergence test based on ker-
nel density estimation for change detection. By performing
density estimation on the original n-dimensional space, this
test is susceptible to the curse of dimensionality [25]. While
one could apply this test after distribution factorisation, prov-
ing the non-negativity of the resulting score is non-trivial.
Other change detection techniques on multivariate time se-
ries [1, 4, 5, 8] also work on the n-dimensional space, and
hence, are also prone to the curse of dimensionality.

Our method in contrast alleviates the high dimension-
ality issue by scalable PCA mapping using matrix sampling.
Furthermore, it does not make any assumption on data distri-
butions nor that dimensions are linearly correlated. Lastly, it
permits to set the windows size to match the level of details
required by the domain expert.

5 Experiments
In this section, we empirically evaluate LIGHT. In particular,
we study its effectiveness in detecting known change points
on both synthetic and real-world data sets. We implemented
LIGHT in Java, and make our code available for research
purposes.1 All experiments were performed single-threaded
on an Intel(R) Core(TM) i7-4600U CPU with 16GB RAM.
We report wall-clock running times.

We compare to PIND [22] and SPLL [11], two state of the
art methods for PCA-based change detection. Both apply tra-
ditional PCA, assuming that dimensions in the PCA space are
statistically independent. In addition, we consider RSIF [17],
which measures divergence scores by directly approximat-
ing density ratio of distributions. For each competitor, we
optimise parameter settings according to their respective pa-
pers. LIGHT has 4 parameters, namely the number of sam-
pled dimensions c which is used in scalable PCA mapping;
the percentage of variance preserved which is used in scal-
able PCA mapping; the number of sketches s1 and the num-
ber of average sketch values s2 which are used in distribution
factorisation. Note that the last two parameters apply for any
method using AMS Sketch [2]. The default setting for the
parameters is: c = 200, percentage = 90%, s1 = 50, and
s2 = 3.

We experiment on both synthetic and real data sets. For
the latter, we draw 7 data sets from the UCI Machine Learn-
ing Repository: Amazon, EMG Actions 1, EMG Actions 2,
Human Activities, Human Postural Transitions, Sport Activ-
ities, and Youtube Video Games. All are high dimensional
time series. As change points, we use existing class labels
– a common practice in change detection [9, 28]. Table 1
summarises the characteristics of these data sets.

1http://eda.mmci.uni-saarland.de/light/



Data M n

Amazon 30 000 20 000
EMG Actions 1 1 800 3 000
EMG Actions 2 3 600 2 500
Human Activities 10 299 561
Human Postural Transitions 10 929 561
Sport Activities 9 120 5 625
Youtube Video Games 120 000 50 000

Table 1: Characteristics of the real data sets. M is the length
of the time series and n is its number of dimensions.

5.1 Synthetic Data Generation Each n-dimensional time
series we generate contains 100 segments, each having 2000
time steps. We create the change point between every
two consecutive segments by varying either distributions or
correlation patterns of some dimensions. This means that
each time series has 99 change points. We evaluate change
detection techniques based on how well they retrieve these
known change points. In line with previous work [11, 22], a
change point detected by a method is considered to be a true
positive if it is flagged correctly before 2m points from the
new distribution arrive. As performance metric, we use the
F1 measure, which is defined as 2×precision×recall

precision+recall . Note that
the higher the F1 score the better. Below we describe three
different ways to create change points.
Gaussian Distributions. In this setting, vector
(X1, . . . , X2l) has multivariate Gaussian distribution
(l =

⌊
n
3

⌋
). The mean vector and covariance matrix are

initialised randomly. We consider three types of change:
1) change in mean vector, 2) change in individual variance
terms, and 3) change in covariance terms. When creating
segments, we switch among those three types of change
in a round robin fashion. Each remaining dimension Xj

where j ∈ [2l + 1, n] in turn has its distribution fixed to
Gaussian(0, 1).
Linear Correlations. We embed linear correlations in di-
mensions X1, . . . , X2l where l =

⌊
n
3

⌋
. To model corre-

lation in each segment, we first generate Xl×1 = Al×l ×
Zl×1 where Zi ∼ Gaussian(0, 1) and Al×l is fixed with
aij initially drawn from Uniform[0, 1]. Here, Xl×1 and
Zl×1 are two sets, each containing l dimensions. We let
{X1, . . . , Xl} = Xl×1. Next, we generate Wl×1 =
Bl×l × Xl×1 where Bl×l is fixed with bij initially drawn
from Uniform[0, 0.5]. Then, using a function f we gen-
erate Xi+l = f(Wi) + ei where i ∈ [1, l], and ei ∼
Gaussian(0, σ); we fix σ = 0.01. We use two linear in-
stantiations of f :

f1(x) = 2x+ 1, f2(x) =
x

3
− 4.

When creating time series segments, we alternatively pick f1

and f2. In this way, in every two consecutive segments the
correlations between {X1, . . . , Xl} and {Xl+1, . . . , X2l}
are different. Each dimension Xj where j ∈ [2l + 1, n] is
drawn from Gaussian(0, 1).
Non-linear Correlations. To embed non-linear correlations
among dimensions X1, . . . , X2l where l =

⌊
n
3

⌋
, we follow

the procedure as in linear correlations except for that we here
use four non-linear and complex instantiations of f :

f3(x) = x2 − 2x , f4(x) = x3 + 3x+ 1 ,

f5(x) = log(|x|+ 1) , f6(x) = sin(2x) .

When creating time series segments, we switch among f3,
f4, f5, and f6 in a round robin fashion. Each dimension Xj

where j ∈ [2l + 1, n] is drawn from Gaussian(0, 1).

5.2 Quantitative Results on Synthetic Data We assess
quality of the methods tested under different values of di-
mensionality n and window sizes m. For quality against m
we fix n = 2000. For quality against n we fixm = 500. The
results are in Figures 1(a)—1(f).

We find that LIGHT consistently achieves the best per-
formance across different values of n and m, and different
types of change – from linear to highly non-linear. Its qual-
ity improvement over PIND and SPLL is up to 100%.

PIND and SPLL in turn do not perform well, most
likely because they use unstable covariance matrices for PCA
transformation (note that n > m in all cases tested). At
n = 8000, we have to stop the execution of PIND and SPLL
due to excessive runtime (more than 12 hours).

RSIF does not perform so well (especially on non-linear
correlations), most likely as it assumes that data is uniformly
distributed in high dimensional spaces.

LIGHT in contrast reliably detects changes in high di-
mensional time series with small window sizes. By not mak-
ing assumptions on data distributions nor that dimensions
are linearly correlated, it copes well with different types of
change and yields high quality results.

5.3 Efficiency Results using Synthetic Data Here we test
efficiency against window size m and dimensionality n. The
setup is as above. We show representative results on data
sets with non-linear correlations in Figures 2(a) and 2(b).
Results on other types of data sets are similar and hence
skipped for brevity.

We see that in both cases, LIGHT is more efficient than
all competitors. The performance improvement over PIND
and SPLL is more than 100% for high values of n. Further,
the experiments show that LIGHT has linear scalability to n
and m, which corroborates our analysis in Section 3.5.

5.4 Parameter Sensitivity To assess the sensitivity of
LIGHT to its parameters, we re-use the synthetic data sets
above, fixing n = 2000 and m = 500. The default setting
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Figure 1: [Higher is better] Comparison with competitors:
F1 scores on synthetic data sets. Overall, LIGHT yields
the best quality across different types of change, values of
dimensionality n, and window sizes m.

for the parameters is: c = 200, percentage = 90%, s1 = 50,
and s2 = 3. That is, when testing against one parameter we
use the default setting for the other parameters.

The representative results on data sets with non-linear
correlations are in Figures 3(a)—3(d). We see that LIGHT
is very stable to different values of its parameters, which
facilitates easy parameterisation. The results also suggest
that our default setting makes a reasonable choice in terms
of both quality and efficiency.

5.5 Ablation Study To study the impact of our design
choices, we consider three variants of LIGHT, each of which
we create by switching off one of its properties. The first one
is LIGHTind , for LIGHT with independence assumption. Es-
sentially, LIGHTind applies our scalable PCA mapping (see
Section 3.1) but assumes that dimensions in PCA spaces are
statistically independent. It could be seen as an extension
of PIND. The second variant is LIGHTnf , for LIGHT with-
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Figure 2: [Lower is better] Comparison with competitors:
Runtime on synthetic data sets with non-linear correlations.
Overall, LIGHT has the best scalability across different
values of dimensionality n and window sizes m.
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Figure 3: Sensitivity of LIGHT to parameter setting on
synthetic data sets with non-linear correlations. Overall, in
terms of quality LIGHT is very stable to parameter setting.

out factorisation. That is, LIGHTnf applies our scalable PCA
mapping and then computing change score using joint dis-
tributions in full PCA spaces. For LIGHTnf , we use the
quadratic measure of divergence [20] with computation on
empirical data in closed form. The third variant is LIGHTnp ,
for LIGHT without PCA mapping, i.e. factorisation is per-
formed on original n-dimensional spaces.

We show representative results on data sets with non-
linear correlations in Figures 4(a) and 4(b). We can see that
LIGHT outperforms all of its variants. That LIGHT is better
than LIGHTind highlights the importance of taking into
account correlations in PCA spaces. That LIGHT outperforms
LIGHTnf shows the effectiveness of our factorisation step.
Finally, LIGHTnp tries to approximate very high dimensional
distributions. This is much harder than approximating lower
dimensional ones, as LIGHT does. This explains why LIGHT
achieves a better performance than LIGHTnp . In terms of
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Figure 4: [Higher is better] Comparison with variants: F1
scores on synthetic data sets with non-linear correlations.
Overall, LIGHT outperforms all of its variants.

runtime, LIGHTind and LIGHTnf are faster than LIGHT since
they do not spend time to factorise the joint distribution of
each PCA space. The difference however is negligible.

5.6 Results on Real Data We now study the performance
of LIGHT on real data. We give an overview of the data
sets in Table 1. Each of them is a labeled time series. As
change points, we use these class labels, a common practice
in change detection literature [9, 28]. For Human Activities
(HAR) and Human Postural Transitions (HAPT), as their
numbers of dimensions are only in the hundreds, we set
c = 50 and m = 100 for LIGHT. For the other time series,
we use its default parameter setting. We evaluate quality
using the F1 measure.

The results are in Table 2 and 3. Overall, we can see that
LIGHT consistently yields the best quality and is the most
efficient across all time series. Notice that EMG1, EMG2,
and Sport are relatively small in length while having many
dimensions. For an effective change detection on such time
series, it is necessary to use small window sizes. This is an
issue for PIND and SPLL. In particular, they have to perform
PCA transformation on very unstable covariance matrices,
which could be an explanation why they do not perform well
on EMG1, EMG2, and Sport. For Amazon and Youtube data,
the runtime of PIND and SPLL exceeds 12 hours. LIGHT
in contrast achieves high accuracy on all high dimensional
time series tested. Further, it finishes within 1.5 hours even
on the 20 000 dimensional Amazon and 50 000 dimensional
Youtube data, and has very high accuracy on both data sets.

6 Discussion
The experiments show that LIGHT is both very efficient and
yields high quality for change detection in very high dimen-
sional time series containing different types of change, be
them linear or non-linear. Furthermore, it allows small win-
dow sizes to be used. This makes it applicable to differ-
ent types of time series, e.g. those where the dimensional-
ity is even larger than the series length, such as EMG1. Its
good performance over the competition suggests the follow-

Data LIGHT PIND SPLL RSIF

Amazon 0.91 - - 0.64
EMG1 0.77 0.48 0.45 0.72
EMG2 0.84 0.41 0.44 0.67
HAR 0.83 0.62 0.55 0.70
HAPT 0.85 0.68 0.62 0.71
Sport 0.94 0.51 0.46 0.84
Youtube 0.93 - - 0.76

Average 0.87 0.54 0.50 0.72

Table 2: [Higher is better] F1 scores on real data sets.
Best values are in bold. ‘-’ means excessive runtime (more
than 12 hours). Overall, LIGHT consistently yields the best
quality across all data sets.

Data LIGHT PIND SPLL RSIF

Amazon 1273.6 ∞ ∞ 1944.5
EMG1 1.2 92.6 98.1 3.1
EMG2 1.1 345.7 341.5 2.3
HAR 2.9 11.2 12.8 3.3
HAPT 2.4 12.5 12.4 3.3
Sport 5.6 1295.7 1280.4 11.9
Youtube 4863.5 ∞ ∞ 7338.4

Average 878.6 ∞ ∞ 1329.5

Table 3: [Lower is better] Runtime (in seconds) on real data
sets. Best values are in bold. ‘∞’ means excessive runtime
(more than 12 hours). Overall, LIGHT consistently is the
most efficient across all data sets.

ing. First, our scalable PCA transformation is much more ef-
fective than traditional PCA mapping when it comes to high
dimensionality. The benefits scalable PCA mapping brings
here lie in both quality and efficiency. Second, our distribu-
tion factorisation yields better quality than using joint distri-
butions or assuming statistical independence in PCA spaces.
That LIGHT outperforms competitors and its variants could
also be attributed to our new divergence measure, which can
capture changes in both linear and non-linear structures.

Yet, there is room for alternative methods as well as fur-
ther improvements. For instance, besides the matrix sam-
pling method we employ, it also is interesting to explore
other related techniques, such as [24]. The details, how-
ever, are beyond the scope of this work. In addition, we here
pursue the non-parametric setting. As long as the knowl-
edge on data distributions is known, one can resort to para-
metric methods to compute other divergence measures, e.g.
Kullback-Leibler divergence or Jensen-Shannon divergence.
As future work, we plan to extend LIGHT to time series with
mixed data types, e.g. those with numeric and categorical di-



mensions. This will help us to enrich the capability of LIGHT
in real-world applications.

7 Conclusion
In this paper, we studied the problem of change detection
on very high dimensional time series. This setting poses
both efficiency and quality issues. To address these, we
proposed LIGHT. In short, it works in three steps: 1)
scalable PCA mapping to reduce dimensionality, 2) scalable
factorisation of joint distributions in PCA spaces to increase
robustness, and 3) scalable computation of divergence scores
on factorised distributions. Experiments on both synthetic
and real-world data show LIGHT outperforms state of the art
with up to 100% improvement in both quality and efficiency.
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space search scheme overcoming traditional apriori process-
ing. In BigData Conference, pages 359–367, 2013.

[20] H. V. Nguyen, E. Müller, J. Vreeken, and K. Böhm. Unsu-
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A Proofs
Proof. [Lemma 3.1] By definition we have that

KL (p(Y1, . . . , Yk) || q(Y1, . . . , Yk))

=

∫
p(y1, . . . , yk) log

p(y1, . . . , yk)

q(y1, . . . , yk)
dy1 · · · dyk.

From Section 3.2 and based on the convention of our frame-
work, we have p(Y1, . . . , Yk) =

∏
(Yi,Yj)∈E

p(Yi,Yj)∏
Y∈V p(Y )deg(Y )−1 and

q(Y1, . . . , Yk) =

∏
(Yi,Yj)∈E

q(Yi,Yj)∏
Y∈V q(Y )deg(Y )−1 . Using these informa-

tion we deduce that

KL (p(Y1, . . . , Yk) || q(Y1, . . . , Yk))

=
∑

(Yi,Yj)∈E

∫
p(y1, . . . , yk) log

p(yi, yj)

q(yi, yj)
dy1 · · · dyk

−
∑

Y ∈V:deg(Y )>1

∫
p(y1, . . . , yk) log

p(y)

q(y)
dy.

Thus, we arrive at the result.

Proof. [Lemma 3.2] First, we prove that

div (P (Yi) || Q(Yi))

≤ (max(Yj)−min(Yj))× div (P (Yi, Yj) || Q(Yi, Yj)) .

In particular we have that P (yi) =
∫
P (yi, yj)dyj and

similarly for Q(yi). Thus,

(P (yi)−Q(yi))
2

=

(∫
(P (yi, yj)−Q(yi, yj)) dyj

)2

≤ (max(Yj)−min(Yj))×
∫

(P (yi, yj)−Q(yi, yj))
2
dyj .

The inequality is in fact the Cauchy-Schwarz inequality.
Hence,

1

(max(Yj)−min(Yj))
× div (P (Yi) || Q(Yi))

≤
∫

(P (yi, yj)−Q(yi, yj))
2
dyidyj .

The right hand side of the above inequality is indeed
div (P (Yi, Yj) || Q(Yi, Yj)).

As Yis are obtained by PCA it holds that

Yi ∈

−
√√√√ n∑

i=1

max{v2
i ,V

2
i },

√√√√ n∑
i=1

max{v2
i ,V

2
i }

 .
We now need to prove that for all Y ∈ Y = {Y : deg(Y ) >
1}, we can choose for each Y a set of (deg(Y ) − 1) terms

of the form div (P (Y, Yi) || Q(Y, Yi)) such that (Y, Yi) ∈ E
and different Y s will not share any common term. First, as
the number of edges of the maximum spanning tree is (k−1),
we have that ∑

Y ∈Y

(deg(Y )− 1) = k − 2.

Now we pick the terms for all Y ∈ Y as follows. We
consider edges (Yi, Yj) whose one end-point is a leaf. When
k > 2 it must be the case that either Yi ∈ Y or Yj ∈ Y.
Assuming that the former holds we remove edge (Yi, Yj) and
assign term div (P (Yi, Yj) || Q(Yi, Yj)) to Yi. We carry on
until all edges are removed. Note that under this procedure
a node Y ∈ Y is not removed from the tree until deg(Y )
becomes 1. This also means that when Y is removed there
have been (deg(Y )−1) terms assigned to it. This completes
the second part of the proof.

With the results in the first part and the second part, we
arrive at score ≥ 0. Equality happens when P (Yi, Yj) =
Q(Yi, Yj) for (Yi, Yj) ∈ E and P (Y ) = Q(Y ) for Y ∈ Y.
This means that p(Y1, . . . , Yk) and q(Y1, . . . , Yk) under the
factorization model are equal.

When p(Y1, . . . , Yk) and q(Y1, . . . , Yk) are equal, we
have that P (Yi, Yj) = Q(Yi, Yj) for (Yi, Yj) ∈ E and
P (Y ) = Q(Y ) for Y ∈ Y. Thus, score = 0. We complete
our proof.

B Incremental Computation of Divergence Score
We illustrate the idea on incrementally computing
div (p(E,F ) || q(E,F )) where E,F ∈ {Y1, . . . , Yk}.
Incrementally computing div (p(Y ) || q(Y )) where
Y ∈ {Y1, . . . , Yk} follows straightforwardly.

Assume that the empirical data forming p(E,F ) con-
tains data points {(ep,1, fp,1), . . . , (ep,m, fp,m)}. Analo-
gously, we denote {(eq,1, fq,1), . . . , (eq,m, fq,m)} as the
data points forming q(E,F ). According to [20],
div (p(E,F ) || q(E,F )) =

1

m2

m∑
j1=1

m∑
j2=1

(Ve −max(ep,j1 , ep,j2)) (Vf −max(fp,j1 , fp,j2))

− 2

m2

m∑
j1=1

m∑
j2=1

(Ve −max(ep,j1 , eq,j2)) (Vf −max(fp,j1 , fq,j2))

+
1

m2

m∑
j1=1

m∑
j2=1

(Ve −max(eq,j1 , eq,j2)) (Vf −max(fq,j1 , fq,j2)) .

Thus, div (p(E,F ) || q(E,F )) can be factorized per data
point. By storing the contribution of each point to
div (p(E,F ) || q(E,F )), we can incrementally update this
score in O(m) time. We have O(k) score terms in total.
Thus, the cost to compute divergence score for each new
sample of the time series is O(mk).



C Scaling to Large Window Sizes
The idea is that score is computed based on terms of the
form div (p(.) || q(.)) where p(.) and q(.) are estimated from
the data of Wtrans

ref and Wtrans
test , respectively. An implicit

assumption here is that the data of Wtrans
ref (similarly for

Wtrans
test ) are i.i.d. samples of p(.). By definition, i.i.d.

samples are obtained by randomly sampling from an infinite
population or by randomly sampling with replacement from
a finite population. In both cases, the distribution of i.i.d.
samples are assumed to be identical to the distribution of
the population. This is especially true when the sample
size is very large [25]. Thus, when m is very large the
empirical distribution p̂(.) formed by Wtrans

ref approaches
the true distribution p(.). Assume now that we randomly
draw with replacement ε × m samples of Wtrans

ref where
ε ∈ (0, 1). As mentioned above, these subsamples contain
i.i.d. samples of p̂(.) ≈ p(.). As with any set of i.i.d.
samples with a reasonable size, we can assume that the
empirical distribution formed by the subsamples is identical
to p(.). Thus, we can use them to approximate score. In that
case, the complexity of computing score for initialWref and
Wtest or after every change is reduced to O(ε2m2k). When
subsampling is needed we only use it once for eachWref .


