
The Difference and the Norm
Characterising Similarities and Differences between Databases

Kailash Budhathoki and Jilles Vreeken

Max-Planck Institute for Informatics and Saarland University, Germany
{kbudhath,jilles}@mpi-inf.mpg.de

Abstract. Suppose we are given a set of databases, such as sales records over
different branches. How can we characterise the differences and the norm be-
tween these datasets? That is, what are the patterns that characterise the gen-
eral distribution, and what are those that are important to describe the individual
datasets? We study how to discover these pattern sets simultaneously and with-
out redundancy – automatically identifying those patterns that aid describing the
overall distribution, as well as those pointing out those that are characteristic for
specific databases. We define the problem in terms of the Minimum Descrip-
tion Length principle, and propose the DIFFNORM algorithm to approximate the
MDL-optimal summary directly from data. Empirical evaluation on synthetic and
real-world data shows that DIFFNORM efficiently discovers descriptions that ac-
curately characterise the difference and the norm in easily understandable terms.

1 Introduction

Suppose we are given a set of databases, such as the sales records over different branches
of a chain. How can we characterise the differences and the norm between these datasets?
That is, what are the patterns that are common to all databases, and what are those that
are important to characterise the individual databases? For example, whereas bread and
butter may be an important pattern in all stores, pasta and ketchup may only be descrip-
tive for the store on campus. When we mine only the complete data we risk missing the
locally important patterns, and when we mine the databases individually we risk miss-
ing the bigger picture. We want to discover all important patterns, without redundancy,
and such that it is clear which databases they are characteristic for.

More in particular, given a set of databases, we want to discover a set of patterns
per database or combination of databases that the user is interested in. These pattern
sets should only include patterns that are descriptive for the databases associated with
the set, and overall these sets should be as non-redundant as possible. That is, together
these pattern sets should succinctly summarise the given data.

We formalise this goal in terms of the Minimum Description Length principle [5,13].
That is, we define the best model as the set of pattern sets that describes the data most
succinctly without loss. By this objective, a pattern will only be included in the model
if it simplifies the description – if it aids compression. This means our model will not
be redundant, nor will it include noise.

To describe an individual database we only have to consider those patterns that are
associated with that database. This allows us to associate patterns with the databases

{kbudhath,jilles}@mpi-inf.mpg.de

they are most characteristic for. As characteristic does not necessarily mean ‘same fre-
quency’, we do not want to punish patterns for having different frequencies in the differ-
ent databases they are associated with. To avoid such undue bias we carefully construct
a score for this setup using prequential coding, a form of Refined MDL [5].

To discover good model directly from data we introduce the DIFFNORM algorithm.
DIFFNORM iteratively searches for that pattern that maximally simplifies the current
description. To this end it searches for those itemsets X and Y in its model that are
most frequently co-used to describe the same transaction, and considers their union as a
candidate pattern. The intuition is that these codes for X and Y are redundant, and that
by introducing that X ∪ Y to the model the description will become more succinct.

Empirical evaluation on synthetic and real-world data shows that DIFFNORM ef-
ficiently discovers descriptions that in easily understandable terms accurately charac-
terise the difference and the norm. On synthetic data it recovers the ground truth of both
local and global patterns, without picking up on noise. On real world data it discovers
succinct and interpretable pattern sets that characterise the split over the data well.

The remainder of this paper is organised as usual. For readability we postpone de-
tails on selected derivations to Appendix ??.

2 Related Work

Comparing two or more transaction databases is a common task, yet there exist surpris-
ingly few techniques that can characterise similarities and differences of databases in
easily understandable terms. Traditional frequent pattern [1] as well as supervised pat-
tern mining approaches [10] for example, discover far too many patterns for the result
to be interpretable. Pattern set mining circumvents the pattern explosion [17]. Existing
unsupervised methods such as TILING [4], SLIM [14], and MTV [8] only characterise
one database at a time, while supervised methods only describe what sets databases
apart. Running these algorithms on multiple (combinations of) databases and compar-
ing the results does not work in practice – small differences in the data distribution can
lead to very different pattern sets which are difficult to compare.

Earlier, Vreeken et al. [16] proposed a dissimilarity measure for transaction data
based on KRIMP [17]. The main idea is to infer a pattern set per database, and then
measure how many bits more we need to describe the other databases with these patterns
– the more similar the data, the small the difference. Here, on the other hand, we are
interested in characterising all databases at the same time, without redundancy.

In Joint Subspace Matrix Factorization (JSMF) the goal is to discover the common
subspace between the two datasets, as well as those that are representative of the spe-
cific datasets. Most relevant, as it considers binary databases, is Joint Subspace Boolean
Matrix Factorization (JSBMF) [9]. To avoid overfitting, it requires the user to specify
the number of patterns per pattern set. Our approach is parameter free. Moreover, as
JSMF is defined for pairs of databases, and not trivially extendable to arbitrary combi-
nations of databases, it cannot simultaneously and without redundancy find the patterns
over multiple subspaces.

3 Preliminaries

In this section we discuss preliminaries and introduce notation.

3.1 Notation

We consider transaction data. Let I be a set of items, e.g. products for sale in a store. A
transaction t ∈ P(I) then corresponds to the set of items a customer bought. A database
D over I is a bag of transactions, e.g. the sales transactions on a given day. We consider
bags D of d such databases, e.g. the sales transactions for different branches of store.

We assume this bag to be indexed such that by Di ∈ D we can access the transac-
tions sold at the i’th branch. Let J = {1, · · · , d} be the set of indexes. An index set
j ∈ P(J) then identifies a subset of databases {Di ∈ D | i ∈ j}. Finally, U ⊆ P(J)
identifies those subsets of databases the user specifies as interesting.

We say that a transaction t ∈ D supports an itemset X ⊆ I, iff X ⊆ t. The support
suppD(X) of X in D is the number of transactions in the database where X occurs.
The relative support of X is its frequency, freqD(X) = suppD(X)/|D|, with |D| for
the number of transactions in D. Further, let ||D|| =

∑
t∈D |t| the total number of

items. For D, we write |D| =
∑
Di∈D |Di|, and define ||D|| analogue.

All logarithms are to base 2, and by convention we use 0 log 0 = 0.

3.2 MDL, a brief primer

The MDL (Minimum Description Length) [12,5] principle, like its close cousin MML
(Minimum Message Length) [19,18], is a practical version of Kolmogorov complex-
ity [6,7]. All three embrace the slogan Induction by Compression. For MDL, this prin-
ciple can be roughly described as follows.

Given a set of modelsM, the best model M ∈M is the one that minimises

L(M) + L(D |M)

where L(M) is the length, in bits, of the description of model M , and L(D |M) is the
length, in bits, of the description of the data when encoded with M .

This is called two-part MDL, or crude MDL. As opposed to refined MDL, where
model and data are encoded together [5]. We use two-part MDL because we are specif-
ically interested in the model: the pattern sets that yield the best compression. Although
refined MDL has stronger theoretical foundations, it can only be computed in special
cases. From refined MDL we will use prequential coding to encode the data without
bias. Note that MDL requires the compression to be lossless in order to allow for fair
comparison between different M ∈M.

To use MDL in practice we have to define our model class M, how to describe
a model M ∈ M, and how a model M describes the data D. In MDL we are only
interested in the length of the description, and never in the encoded data. That is, we are
only concerned with the length of the encoding, not with materialised codes.

4 MDL for the Difference and the Norm

We first informally introduce our problem, and then formalise our objective.

4.1 The Problem, informally

Suppose we are given a bag D of transaction databases. Loosely speaking, by MDL we
are after those patterns – itemsets – that together describe these databases best. More in
particular, we want to optimally jointly characterise the database subsets U that the user
specified as interesting. Our model S will hence consist of a set of patterns Sj for every
j ∈ U . Every individual database Di ∈ D will be described – characterised – using
the union of all Sj ∈ S associated with Di in the sense that i is an element of j. This
allows us to associate patterns with that database subset j they are most characteristic
for. Not only does this makes the overall description of the databases more efficient –
no duplication is necessary – it also makes the model more insightful – if a pattern is
characteristic for all databases, it will be included in the pattern set that is associated
with all databases, when it is characteristic only for one database it will only be included
in the pattern set associated with that particular database, etc.

We will now formally introduce our objective.

4.2 Our Models

A model S is a set of pattern sets S ⊆ P(I), such that every Sj ∈ S is associated
with one of the database subsets j ∈ U the user identifies as interesting. To describe
an individual database Di ∈ D, we consider the union of all pattern sets in S that are
associated with Di, and to make sure every database over I can be encoded without
loss, we also add all singletons Formally, we write πi(S) = {Sj ∈ S | i ∈ j} for the
subset of S relevant to Di, and define the coding set Ci for Di as Ci = I ∪

⋃
πi(S).

4.3 Encoded length of the data

Next, we discuss how we describe data D given a model S, and in particular how to
calculate the encoded length L(D | S). We do so bottom up, starting by how to encode
an individual transaction t ∈ D given an arbitrary coding set C . We do so using a cover
function cover(t,C) that returns a set of patterns from C such that

⋃
cover(t,C) = t.

To encode the patterns in the cover of t, we will use optimal prefix codes. The length
of an optimal prefix code is given by Shannon entropy [2], − log Pr(X). To compute
these lengths, we hence need the probability of a pattern X in the cover of the data. Let
usgD(X,C) = |{t ∈ D | X ∈ cover(t,C)}| be the number of times a pattern X ∈ C
is used in the cover of D. Wherever clear from context we simply write usg(X), and
slightly abusing notation, we say usg(C) for the sum of usages of coding set C , i.e.
usg(C) =

∑
X∈C

usg(X). The probability of X is then Pr(X) = usg(X)∑
Y∈C usg(Y) , and the

length of its optimal prefix code L(code(X) | C) = − log Pr(X).
More in particular, we will use a prequential coding scheme [5]. Prequential codes

are Universal codes [13], which means they are asymptotically optimal without having

to know the usages in advance. That is, unlike for KRIMP [17] we do not have to make
arbitrary choices for how to encode the usages in the model – choices that may incur
undue bias. The idea behind prequential coding is simple: after every received code
we re-calculate all probabilities over the data received so far, initialising the usages to
ε. This means that at any stage we have a valid probability distribution and hence can
send optimal prefix codes. Surprisingly, the order in which we transmit codes does not
affect the encoded length – a sum of logarithms is the logarithm of a product, of which
we can move its terms around at will.

For the encoded length of a transaction t ∈ D we have

L(t | C) = LN(|t|) +
∑

X∈cover(t,C)

L(code(X) | C) ,

where we first encode the cardinality of the transaction, and then the patterns in its cover.
For the cardinality, we use LN, the Universal code for integers [13] which for n ≥ 1 is
defined as LN(n) = log∗(n)+ log(c0) with log∗ = log(n)+ log log(n)+ To make
it a valid code it has to satisfy the Kraft inequality, and hence we set c0 = 2.865064.

For the encoded length of a database D given a coding set C we then have

L(D | C) = LN(|D|) +
∑
t∈D

L(t | C) ,

where we encode the number of transactions in D using LN and then each of the trans-
actions in turn. Aggregating the lengths of all prequential prefix codes, we have

L(D | C) =

[
LN(|D|) +

∑
t∈D

LN(|t|)

]
+

log
usg(C)−1∏

j=0

(j + ε|C |)

∏
X∈C

usg(X)−1∏
j=0

(j + ε)

 .

Note that the first two terms are constant for all models for the same data, and can
hence be ignored during optimisation. The right hand term is the length of the data
when encoded using prequential coding. By common convention, for ε = 0.5 we have

L(D | C) = LN(|D|) +
∑
t∈D

LN(|t|) + logΓ (usg(C) + 0.5|C |)−

logΓ (0.5|C |)−
∑
X∈C

log ((2usg(X)− 1)!!)− usg(X) ,

where !! denotes the double factorial defined as (2k−1)!! =
∏k
i=1(2i−1), and Γ is the

Gamma function, which is an extension of the factorial function to the complex plane.
That is, Γ (x + 1) = xΓ (x), with relevant base cases Γ (1) = 1 and Γ (0.5) =

√
π.

We refer the interested reader to the online appendix for more details on prequential
coding and its computation. Finally, by encoding the number of databases in D, and
then simply encoding every individual database in order, we have

L(D | S) = LN(|J |) +
∑
Di∈D

L(Di | Ci) ,

for the encoded size of D given a model S. This leaves discussing the encoding of S.

4.4 Encoded length of the model

Let us first discuss L(Sj), the encoded length of a pattern set Sj ∈ S. We define

L(Sj) = LN(|Sj |) +
∑
X∈Sj

(
LN(|X|)−

∑
x∈X

log freqD(x)

)

in which we first encode the number of patterns, then their cardinalities. Third, we
transmit the elements of X using optimal prefix codes – allowing us to reconstruct
patterns up to the names of the items – and do so using the marginal item probabilities
over D. By this choice a pattern X is equally expensive regardless of the datasets for
which Sj is relevant. Note that we do not have to encode the pattern usages as we encode
the data prequentially.

Finally, for the encoded length of a model S we have

L(S) = LN(|I|) + LN(||D||) + log

(
||D|| − 1

|I| − 1

)
+
∑
Sj∈S

L(Sj) ,

where we encode the length of the alphabet, the number of items in the data, and then
the support per item using an index over a canonically ordered enumeration of all pos-
sibilities of distributing ||D|| events over |I| labels. This cost is constant for the same
data and can hence be ignored when optimising the model. It is necessary, however, if
we want to compare different encodings or model classes.

4.5 The Problem, Formally

Combining the above, the total encoded length of data D and a model S is defined as

L(D,S) = L(S) + L(D | S) .

By MDL we are after the model that minimises the total encoded length. Formally, our
problem definition is as follows.

Minimal Pattern Sets Problem Let I be a set of items, D a bag of transaction
databases over I, U a set of index sets forD, cover a cover algorithm, and F the space
of all admissible models, F = P(P(I))|U |. Find the set of pattern sets S ∈ F with the
smallest

⋃
S such that the corresponding total compressed size L(D,S) is minimal.

The search space we have to consider for this problem is rather large – even if we
take into account that only patterns that occur in the data can be used to describe the
data. Moreover, it does not exhibit structure we can exploit to efficiently find the optimal
pattern sets, such as submodularity or (weak) monotonicity.

Hence, we resort to heuristics.

5 Algorithm

To discover good models directly from data, we propose the DIFFNORM algorithm.

5.1 The COVER algorithm

First, however, we need a cover function cover(t,C) to determine which patterns from
C will be used to describe transaction t. Ideally cover minimises L(D,S). However, as
there exists a complex non-linear relation between the total encoded length and the in-
dividual usages of patterns, optimising the cover is non-trivial [15]. We therefore adopt
the greedy heuristic successfully used in KRIMP [17]. That is, we greedily cover trans-
action t with non-overlapping patterns from C . We do so in Standard Cover Order,
i.e. we consider the patterns in C sorted descending on cardinality, on support, and lex-
icographically. The intuition is that by doing so we need as few as possible, as frequent
as possible patterns to cover t. Algorithm 1 gives the pseudo-code.

Algorithm 1: GREEDYCOVER

Input: A transaction t over items I and a coding set C
Output: A cover(t,C) ⊆ C

1 for X ∈ C in Standard Cover Order do
2 if X ⊆ t then return{X} ∪ cover(t \X,C) ;

3 return ∅

5.2 The DIFFNORM algorithm

Next we discuss the DIFFNORM algorithm. We give the pseudo code as Algorithm 2.
The main intuition is that we iteratively reduce redundancy in the current description
of the data by adding combinations of existing patterns. That is, we take a SLIM-like
approach [14]. We start with empty pattern sets (line 1). We iteratively generate candi-
dates in the form of X ∪Y with X,Y ∈ S ∪I. We consider these in order of estimated
gain (2). (We postpone the details of ∆L to Sec. 5.4.) Note that we can easily impose
additional constraints (e.g. minimum support) to accommodate user preferences.

Per candidate, we calculate the difference in bits when adding it to the coding set
for each database (line 3–4). We use these gains to determine to which pattern set(s)
Sj ∈ S we will add the candidate (5–7). We do so greedily (6). We first sort the user
specified index sets U descending on gain, cardinality, and last lexicographically. We
iteratively pick the top-most index set, and updating the gain scores of the remaining
sets by removing the gain for data sets already covered by the chosen index sets, and
stop when we cannot select an index set with positive gain.

As the new pattern may have superseded the use of older ones, we have to PRUNE
the model [17]. We give the pseudo-code as Algorithm 3. In a nutshell, we simply
iteratively re-consider every pattern in S for which the usage has decreased – as these
are now more expensive to encode – ordered by how much the usage has decreased.
After pruning we iterate until we cannot find any patterns that improve the total encoded
length. Before we return the patterns, we order them by their relative importance – the
number of bits we would have to spend extra if the pattern would not be included.

Algorithm 2: DIFFNORM

Input: A bag D of transaction databases over items I, and a database index set U
including at least the individual indices over D

Output: An approximation of the MDL-optimal model S for D
1 S ← {∅ | j ∈ U};
2 for Z ∈ {X ∪ Y | X,Y ∈ S ∪ I} descending on ∆L̂(D,S ⊕ Z) do
3 for Di ∈ D do
4 gaini ← ∆L(Di | Ci ⊕ Z);
5 w ← {∆L(D,S ⊕j Z) | j ∈ U};
6 U ′ ←WEIGHTEDGREEDYCOVER(J , U, w);
7 S ′ ← S with Z added to every Sj with j ∈ U ′;
8 S ←PRUNE(D,S,S ′);

9 Order every Sj ∈ S descending on ∆L(D,S 	j Z);
10 return S;

Algorithm 3: PRUNE

Input: A bag D of databases over I, a previous model S and a current model T
Output: A pruned model T

1 Cands ← all patterns X ∈ T for which usg(X, T) < usg(X,S);
2 for X ∈ Cands in Standard Pruning Order do
3 if L(D, T 	X) < L(D, T) then
4 T ← T 	X;
5 Add all patterns Y ∈ T for which usg reduced to Cands;

6 return T ;

5.3 Candidate Generation and Evaluation

The naive approach to optimising a model is to first mine all frequent patterns F in
D, and then iteratively consider these as candidates. KRAMP [14] is the locally optimal
strategy of iteratively adding that Z ∈ F to the model that maximises compression.
Being quadratic in the size of the candidate set, this approach is prohibitively costly.
KRIMP considers these candidates in a fixed order, greedily selecting those that improve
compression [17]. Considering every candidate only once and in a static order KRIMP
is linear in the number of candidates, but quality suffers and as all candidates need to
be pre-mined and ordered materialised the approach remains costly.

Instead, we can iteratively refine the current model by searching for redundancies.
Translated to our setting, SLAM [14] is the locally optimal approach. It iteratively eval-
uates all pairwise combinations X,Y ∈ S ∪ I, accepting that X ∪ Y which maximises
compression. SLIM [14] considers the same candidates, but evaluates these in order of
estimated quality, accepting the first that improves compression. This leads to much
improved run time and overall description length close to SLAM.

Loosely speaking DIFFNORM follows the same adage as SLIM. However, unlike
SLIM, we consider multiple pattern sets – each of which relevant to different set of
databases. When we extend SLIM naively, we would generate overly many candidates

and evaluate them on by far too many pattern sets and databases. To refine this process
we make use of the fact that MDL punishes redundancy – which means that patterns
will only be included in pattern sets they are most relevant for.

First we adapt the candidate generation process. We observe that it is very unlikely
that X ∪ Y will be used much when X and Y are drawn from pattern sets that are
not used to describe the same database. This observation allows us to refine the SLIM
strategy as follows. Instead of considering all pairs X,Y ∈ S ∪ I, we consider only
X ∪ Y if they co-occur in a coding set C for a database D. Formally, we consider only
X ∪ Y for X ∈ Sj and Y ∈ Sk with j ∩ k 6= ∅ as candidates.

Next, we take a closer look at the candidate evaluation process. When we consider
a pattern X ∪ Y with X from a pattern set Sj that is more ‘specific’ than the pattern
set Sk that we draw Y from, that is, j ⊂ k, it will be very unlikely that X ∪ Y will be
a good candidate to add to Sk – otherwise, X would have resided in Sk. We use this
intuition and in these cases only consider to add this candidate to Sj , not to Sk. More in
general, we evaluate the candidate in all Sl ∈ S with l ⊆ j. When j and k overlap, but
j is not a strict subset of k, we evaluate the candidate in all Sl ∈ S with l ⊂ j or l ⊂ k.

5.4 Estimating Candidate Quality

As we aim to minimise the description length, the quality of a candidate Z is the gain in
total compressed size when we would add Z to pattern set Sj ∈ S, i.e. ∆L(D,S⊕j Z).
Formally,

∆L(D,S ⊕j Z) = L(D,S)− L(D,S ⊕j Z)

= ∆L(Sj ⊕ Z) +
∑
i∈j

∆L(Di | Ci ⊕ Z))

= L(Sj)− L(Sj ⊕ Z) +
∑
i∈j

L(Di | Ci)− L(Di | Ci ⊕ Z))

Note that ∆L(Di | Ci ⊕ Z) is constant regardless to which pattern set Sj ∈ S we add
Z – as long as i is in the index set j. Calculating the actual gain for every candidate is
prohibitively costly, however – we need to cover all relevant databases to re-determine
the usages. Instead, we therefore estimate the gain in bits when adding a pattern Z to
pattern set Sj , i.e. ∆L̂(D,S ⊕j Z). We then use WEIGHTEDGREEDYCOVER to get the
total estimated gain, ∆L̂(D,S ⊕ Z), from ∆L̂(D,S ⊕j Z) ∀ j ∈ U . To this end we
assume that as candidate we consider the union of patterns X,Y ∈ S ∪ I, and that
adding X ∪Y to pattern Sj will affect only the usages of X and Y and not that of other
patterns in S. Formally, we have

∆L̂(D,S ⊕j X ∪ Y) = ∆L̂(Sj ⊕X ∪ Y) +
∑
i∈j

∆L̂(Di | Ci ⊕X ∪ Y) ,

where for the estimated difference in encoded length of Sj we have

∆L̂(Sj ⊕X ∪ Y) = L(Sj)− L(Sj ⊕X ∪ Y)

= LN(|X ∪ Y |)−
∑

x∈X∪Y
log freqD(x) .

Somewhat more intimidating, for the estimated encoded length of the data we have

∆L̂(Di | Ci ⊕X ∪ Y) = log(Γ (usg(C) + ε|C |))− log(Γ (ûsg(C ′) + ε|C ′|))+
log(Γ (ûsg(X,C ′) + ε))− log(Γ (usg(X,C) + ε))+

log(Γ (ûsg(Y,C ′) + ε))− log(Γ (usg(Y,C) + ε))+

log(Γ (ûsg(X ∪ Y,C ′) + ε))− log(Γ (ε))+

log(Γ (ε|C ′|))− log(Γ (ε|C |))

were C ′ = C ∪ {X ∪ Y }, and ûsg(Z,C ′) is the estimation of the usage of pattern Z
when covering the data using C ′. We estimate the usage ofX∪Y optimistically, assum-
ing it will be used wherever X and Y were co-used. That is, we say ûsg(X ∪ Y,C ′) =
|utids(X) ∩ utids(Y)|, where utids(X) = {tid(t) | t ∈ D,X ∈ cover(t,C)} are
the ids of the transactions covered using X . Following the same assumption, we have
ûsg(X,C ′) = usg(X,C)− ûsg(X ∪ Y,C ′), and analogue for Y .

Since we only generate and evaluate the candidates against their relevant coding sets
Ci, we do the same when estimating gain. Further, to avoid re-computing all estimates at
every iteration we cache the estimated gains of patterns. However, whenever a candidate
Z is added to or pruned from S the usages of other patterns X ∈ S may change – and
hence so should the estimates of any candidates that use X . We re-estimate the gains of
these candidates, and maintain those for the other candidates.

5.5 Complexity

Finally, we analyse the computational complexity of DIFFNORM. In worst case, a model
S contains all the frequent patterns F . Let |S| be the total number of patterns in model
S. At worst, generating the candidates takes O((|S| + |I|)2) ⊆ O(|F|2) steps. Cal-
culating the gain takes O(|S|) ⊆ O(|F|) steps. WEIGHTEDGREEDYCOVER takes
O(|U | × log |U |) steps for sorting U and O(|U |2) steps for greedy selection and gain
re-computation. Finally, PRUNE takes O(|S|2 × |D|) steps. Altogether, the worst case
computational complexity isO(|F|3×|D|). In practice, DIFFNORM is fast. First, MDL
restricts the number of patterns in the model, pruning keeps the model non-redundant,
and model changes rarely affect many patterns. Second, we generate candidates not
naively from S but over coding sets C , and evaluate candidates only on the relevant
databases Di.

6 Experiments

We implemented our algorithm in C++ and provide the source code for the research
purposes, along with the used datasets, and synthetic dataset generator.1 All experi-
ments were executed single-threaded on Intel Xeon E5-2643 v3 machines with 256 GB
memory running Linux. We report the wall-clock running times.

We consider both synthetic and real-world data. We give the basic statistics of the
real-world datasets in Table 1. For each dataset we give the number of rows, size of the

1 http://eda.mmci.uni-saarland/diffnorm/

http://eda.mmci.uni-saarland/diffnorm/

Table 1. Base statistics of the datasets used in the experiments. We report the number of rows,
the size of the alphabet, the total number of items, and the number of databases.

Dataset |D| |I| ||D|| |J |

Adult 48 842 97 726 165 2
ChessBig 28 056 58 196 392 18
Nursery 12 960 32 116 640 5
Mushroom 8 124 119 186 852 2
PageBlocks 5 473 44 60 203 5
Led7 3 200 24 25 600 6
Chess 3 196 75 118 252 2

alphabet |I|, total number of items and number of databases. For readability we use the
shorthand notation L% = L(D,S)

L(D,S0)% for the relative compressed size of D with S0 the
model consisting of only empty pattern sets – lower is better.

In all experiments we consider U = {{1}, . . . , {|D|}, Ω} whereΩ = {1, . . . , |D|}.
That is, we want a pattern set Si per individual Di ∈ D, and in addition we want to
have a pattern set SΩ that contains the patterns characteristic to all databases in D.

6.1 Synthetic Data

First, we consider synthetic data to study the behaviour of DIFFNORM on data with
known ground truth. We divide the possible data into four categories: data with no pat-
terns included, data where patterns are local to individual databases, data where patterns
occur globally in every database, and data where we mix global and local patterns, i.e.
data containing both local and global patterns.

For each setup we generate aD of two databases of 5 000 rows each over 120 items.
We randomly plant non-overlapping patterns of cardinality uniformly chosen over the
range of 4 to 8, with random frequency over the range 10% to 30%. In addition, we
add 5% uniform noise. We run DIFFNORM with a minimum support of 4.5%. Table 2
shows the result of DIFFNORM per synthetic dataset, i.e. number of planted patterns,
the total encoded size given the simplest model S0, relative compressed size L%. Fur-
ther, following [20], we report the number of exactly recovered patterns, the number of
discovered patterns that are unions or subsets of unions of planted patterns, the number
of discovered patterns that correspond to intersections between planted patterns, and
the number of patterns that are tainted with, or completely due to noise.

We find that for Random, DIFFNORM correctly infers that the data does not contain
any patterns. As for the other datasets, DIFFNORM discovers exactly all the planted
patterns. In addition, DIFFNORM discovers patterns that are the union, or a subset
thereof, of planted patterns X and Y – this is due to generative process. As we allow
multiple patterns on the same row, particularly when X and Y are very frequent their
combination can also become frequent, and therewith descriptive for the data. Overall,
DIFFNORM identifies all the interesting patterns from the synthetic datasets.

Table 2. DIFFNORM recovers true patterns Results on synthetic data. Per dataset we give
the number of planted patterns, the baseline description length, and the relative compression
L% we obtain. Further, we report the total number of patterns DIFFNORM discovers, and break
this down into the number of exactly recovered patterns (=), the number of discovered patterns
that are (subsets of) unions of planted patterns (∪), the number of discovered patterns that are
intersections of planted patterns (∩), the number of patterns unrelated to planted patterns (?).

Discovered Patterns

Dataset # planted L(D,S0) L% |S| = ∪ ∩ ?

Random 0 387 201 100 0 0 0 0 0
Local 16 587 557 22.1 17 16 1 0 0
Global 10 1 180 530 22.4 17 10 7 0 0
Mixture 19 1 008 546 11.9 29 19 10 0 0

6.2 Real World Data

Next, we investigate the performance of DIFFNORM on real-world data. In particular,
we first consider seven datasets from Frequent Itemset Mining Implementations (FIMI)
repository.2 For these experiments we set a minimum support of 2. The result on FIMI
datasets is given in Table 3. We see that DIFFNORM is efficient, requiring only seconds
for these datasets. Moreover, we find that it achieves very good compression ratios
(lower is better), and returns only modest numbers of patterns.

This leaves us to compare these numbers. This is more difficult than it may seem.
For starters, comparing description lengths only makes sense when we consider the
same model class and exactly the same data. Comparing on the number of discovered
patterns is not trivial either. Comparing to the number of (closed) frequent itemsets [11]
is not fair as it is not meant to give a summary of the data. Supervised methods [21] only
report patterns that set classes apart, and do not describe the data awhole. Summarisa-
tion methods such as SLIM [14] do give succinct description per database, but lack a
way to identify patterns common between the databases. Considering the number of
patterns discovered summed over all databases would be hugely inflated. Most fair, we
find is to compare to the number of patterns discovered over the whole data, i.e. over
D∪ =

⋃
D. We run both DIFFNORM and SLIM on this database with minsup 2 and

report the number of discovered patterns. We see that DIFFNORM discovers roughly
the same number of patterns as before, while SLIM on the other hand generally finds
many more patterns. This is likely due to overfitting as its encoding scheme does not
encode pattern lengths and codes without loss.

Next, we investigate how the patterns that DIFFNORM discovers are distributed over
the different databases. That is, in Figure 1 we show the sizes of the discovered pattern
sets, starting with the size SΩ , the pattern set associated with all databases, and then the
sizes of each of the Si corresponding to Di ∈ D. We see that the patterns are nicely

2 http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/

Table 3. DIFFNORM discovers succinct descriptions. Results of DIFFNORM on the real data
sets. For DIFFNORM we give the baseline compression cost L(D,S0), the relative compressed
size L% (lower is better), the wall-clock time in seconds, and the total number of discovered
patterns. For comparison, in addition we report the number of patterns DIFFNORM and SLIM [14]
discover when we concatenate all databases into D∪ =

⋃
D.

DIFFNORM (D) DN(D∪) SLIM (D∪)

Dataset L(D,S0) L% time (s) |S| |S| |S|

Adult 3 237 869 25.6 73.5 757 782 2702
ChessBig 838 358 75.3 11 899 769 1420
Nursery 471 928 58.3 6.5 294 371 308
Mushroom 1 020 100 25.8 17 442 435 1667
PageBlocks 186 765 4.3 0 26 48 105
Led7 68 034 34.2 0 80 56 194
Chess 660 914 20.6 7.5 265 264 653

distributed over S, it is not the case that all patterns are in either the global, or just in
the local pattern sets.

We proceed to evaluate how well DIFFNORM optimises our objective. As we do not
know the true optimum, we look at how the relative compression L% converges over
the search iterations. An iteration here refers to the event when a pattern is accepted by
DIFFNORM. As shown in Figure 2(a), for the Adult dataset, the relative compression
reduces very sharply in the beginning and after a certain number of iterations it con-
verges more slowly as it then needs to refine the more general patterns discovered in the
first iterations. Note that as we PRUNE the number of iterations and the final number of
patterns differ.

DIFFNORM relies heavily on the quality of estimating ∆L. We evaluate the quality
of our estimate by checking how well ∆L̂(D,S ⊕X ∪ Y) correlates to the actual gain
∆L(D,S⊕X∪Y). We consider Adult and plot the estimated and actual gain for all the
candidates considered by DIFFNORM in Figure 2(b). We see that the two are strongly
correlated, as most of the points lie along the diagonal, particularly those for high gain
candidates. This also explains the shape of the convergence curve in Figure 2(a) – can-
didates with higher estimated gains are tested during early stages of the algorithm. We
find that for lower estimated gains the correlation is weaker. This is explained by our
assumption that all usages of all patterns in S remain constant, except for X and Y .

In our final experiment, we evaluate DIFFNORM qualitatively. For this, we consider
the ICDM dataset.3 This data consists of the abstracts – stemmed and stop-word re-
moved – of 859 papers published at ICDM. We divide the data into two classes: one
of the abstracts that do contain the word mining (359 rows) versus the remainder (500
rows). With the minimal support set to 5, DIFFNORM takes 71.5 seconds, and discovers
637 patterns in total, 35 for the first class, 54 for the second, and 548 in SΩ . As expected,

3 Available from the authors of [3].

0 100 200 300 400 500 600 700 800 900

Adult

Chess

ChessBig

Led7

Mushroom

Nursery

PageBlocks

Number of patterns

D
at

as
et

Fig. 1. DIFFNORM discovers both local and global patterns For FIMI datasets, we show the
number of patterns in each pattern set discovered by DIFFNORM as indicated by the width of
each colored box. The leftmost purple colored box indicates the global pattern set SΩ .

we find that the patterns found in abstracts containing mining point more towards ex-
ploratory analysis. The patterns discovered from abstracts not containing mining point
more towards machine learning. On the global patterns, we find commonly used phrases
in research papers like “state of the art”, “evaluation”, etc. We give 5 highly character-
istic exemplars drawn from the top-10 of each pattern set in Table 4.

Table 4. DIFFNORM finds meaningful patterns Results of DIFFNORM on the ICDM dataset
when split on abstracts including the word ‘mining’ and those that do not. Shown are five patterns
per pattern set, where SΩ is the pattern set associated with both databases.

Smining S¬mining SΩ

association rule large database accuracy learn work algorithm exp. problem result
fp tree svm machine framework general model
prune previous cluster partition method large set
strategy freq. pattern discover classifier train state [of the] art
support threshold approach learn evaluation technique

7 Discussion

The experiments show that DIFFNORM works well in practice. On synthetic data we
recover all planted patterns exactly, and returns these top-ranked in the output. On the
real world data DIFFNORM discovers succinct descriptions, returning on average less
than half as many patterns as SLIM [14]. Moreover, the ICDM abstracts data show that
the results are clean and easily interpretable. Finally, we showed that DIFFNORM effi-
ciently optimises its objective score thanks to effective quality estimation of candidates.

0 200 400 600 800 1 000

20

40

60

80

100

iteration

L
%

(a) Convergence of L(D,S).

0 0.5 1 1.5 2 2.5

·105

0

0.5

1

1.5

2

2.5
·105

∆L(D,S ⊕X ∪ Y)

∆
L̂
(D
,
S
⊕
X
∪
Y
)

(b) Correlation of Estimation and Actual
Gain.

Fig. 2. DIFFNORM searches efficiently and estimates accurately For Adult we show (left) the
convergence of the relative compression L% per search iteration, and (right) the correlation be-
tween the estimated and actual gains of candidates. Candidates marked as circles were accepted
whereas those marked as crosses were rejected.

Although these results are very encouraging, we see many possibilities to further
improve DIFFNORM. A particular strong point is that our concept of multiple pat-
tern sets and prequential coding can be extended to other data and pattern types, such
as serial episodes [15]. Moreover, it will make for engaging future work to extend
DIFFNORM such that it can automatically discover the optimal U for a given set of
databases, and/or simultaneously find the optimal partitioning of a single given database.

Last, we have to note that MDL is not a magic wand. That is, even though we
use prequential coding our objective function involves choices, and so does the opti-
misation. Currently we encode patterns in the pattern sets using the global singleton
frequencies. In certain settings it may more sense to use the frequencies over the rele-
vant databases instead. Extending DIFFNORM to allow for overlap would likely lead to
even more succinct descriptions.

8 Conclusion

We studied how we can characterise the differences and similarities between a set of
databases using pattern sets. We formalised the problem in terms of the Minimum De-
scription Length principle [5], defining the best set of pattern sets as the one that gives
the most succinct description of the data. To find good models directly from data we
introduced the parameter-free DIFFNORM algorithm. Empirical evaluation showed that
DIFFNORM discovers easily interpretable and non-redundant summaries that clearly
identify which patterns are globally, and which ones are locally important. Future work
includes refining the encoding and extending towards other data and pattern types, as
well as exploring how well the patterns DIFFNORM selects perform in classification.

Acknowledgements

The authors thank the anonymous reviewers for detailed comments. Kailash Budhathoki
and Jilles Vreeken are supported by the Cluster of Excellence “Multimodal Computing
and Interaction” within the Excellence Initiative of the German Federal Government.

References

1. C. C. Aggarwal and J. Han, editors. Frequent Pattern Mining. Springer, 2014.
2. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience New

York, 2006.
3. T. De Bie. Maximum entropy models and subjective interestingness: an application to tiles

in binary databases. Data Min. Knowl. Disc., 23(3):407–446, 2011.
4. F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In DS, pages 278–289, 2004.
5. P. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.
6. A. Kolmogorov. Three approaches to the quantitative definition of information. Problemy

Peredachi Informatsii, 1(1):3–11, 1965.
7. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.

Springer, 1993.
8. M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly with the most informa-

tive itemsets. ACM TKDD, 6:1–44, 2012.
9. P. Miettinen. On finding joint subspace Boolean matrix factorizations. In SDM, pages 954–

965. SIAM, 2012.
10. S. Nijssen, T. Guns, and L. De Raedt. Correlated itemset mining in ROC space: a constraint

programming approach. In KDD, pages 647–656. Springer, 2009.
11. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for

association rules. In ICDT, pages 398–416. ACM, 1999.
12. J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471, 1978.
13. J. Rissanen. A universal prior for integers and estimation by minimum description length.

Annals Stat., 11(2):416–431, 1983.
14. K. Smets and J. Vreeken. SLIM: Directly mining descriptive patterns. In SDM, pages 236–

247. SIAM, 2012.
15. N. Tatti and J. Vreeken. The long and the short of it: Summarizing event sequences with

serial episodes. In KDD. ACM, 2012.
16. J. Vreeken, M. van Leeuwen, and A. Siebes. Characterising the difference. In KDD, pages

765–774, 2007.
17. J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining itemsets that compress. Data

Min. Knowl. Disc., 23(1):169–214, 2011.
18. C. S. Wallace. Statistical and inductive inference by minimum message length. Springer,

2005.
19. C. S. Wallace and D. M. Boulton. An information measure for classification. Comput. J.,

11(1):185–194, 1968.
20. G. Webb and J. Vreeken. Efficient discovery of the most interesting associations. ACM

TKDD, 8(3):1–31, 2014.
21. A. Zimmermann and S. Nijssen. Supervised pattern mining and applications to classification.

In C. C. Aggarwal and J. Han, editors, Frequent Pattern Mining, pages 425–442. Springer,
2014.

A Prequential Coding

A prefix code is a type of coding where no code is the prefix of another code. This allows
the message to be transmitted as a sequence of concatenated codes without any sepa-
rating symbols. The length of an optimal prefix code is given by Shannon entropy [2],
− log Pr(X). The assumption here is that the probability distribution P is static – dur-
ing the transmission process Pr(X) does not change. In order to use the prefix code,
we need to know the Pr(X) beforehand. That is these probabilities need to be transmit-
ted as part of the cost of the model. And the choices on how we do this are relatively
arbitrary [5].

A prequential code, on the other hand, is a prefix code defined over the predictive
sequential probability distribution P ∈ M, where M is the model class. That is the
distribution P , which gave best predictions on the previously observed data, is chosen
for predicting the next outcome. An important property of this being that the prequential
codes are asymptotically optimal without having to know the usages in advance. Also,
we do not transmit the code of the usages anymore. Rather after every received code,
we update its usage and re-calculate the probabilities over the data received so far,
initializing the usages to ε. This means that at any stage we have a valid probability
distribution and hence can send optimal prefix codes.

Let us assume a sequence S of f = |S| messages over alphabet set A. Let |A| =
l. We start by initializing the count of every alphabet ai ∈ A to a small constant ε
i.e. f0(ai) = ε. At this point, transmitting the values ai ∈ S takes − log f0(ai)

εl bits.
After sending j messages from the sequence S, the usage count of the alphabet ai
becomes fj(ai) = ε + |{k | sk = ai with 1 ≤ k ≤ j}|. And transmitting ai requires
− log

fj−1(ai)∑
ak∈A

fj−1(ak)
bits where

∑
ak∈A fj−1(ak) = j + εl. From here onwards we

use fi as the count of the ith alphabet after transmitting all messages in the sequence S.
Note that, we re-calculate the probability every time a message is transmitted. Putting

it altogether, the code length for transmitting the sequence S, denoted L(S), is given by

L(S) = log

f−1∏
j=0

(j + εl)

l∏
i=1

fi−1∏
j=0

(j + ε)

= log
(f − 1 + εl)(f − 2 + εl) . . . (1 + εl)(εl)
l∏
i=1

(fi − 1 + ε)(fi − 2 + ε) . . . (1 + ε)(ε)

= log
Γ (f + εl)/Γ (εl)
l∏
i=1

Γ (fi + ε)/Γ (ε)

= logΓ (f + εl)− logΓ (εl)−
l∑
i=1

[log{Γ (fi + ε)} − log{Γ (ε)}]

A natural and often used value for ε is 0.5. Using ε = 0.5, we get

L(S) = logΓ (f + 0.5l)− logΓ (0.5l)−
l∑
i=1

[log{Γ (fi + 0.5)} − log{Γ (0.5)}]

= logΓ (f + 0.5l)− logΓ (0.5l)−
l∑
i=1

[
log

(2fi − 1)!!
√
π

2fi
− log

√
π

]

= logΓ (f + 0.5l)− logΓ (0.5l)−
l∑
i=1

[
log{(2fi − 1)!!}+ log

√
π − log(2fi)− log

√
π
]

= logΓ (f + 0.5l)− logΓ (0.5l)−
l∑
i=1

[log{(2fi − 1)!!} − fi]

where n!! =
k∏
i=0

(n − 2i) such that k = dn/2e − 1 is the double factorial of n and

Γ is the gamma function i.e. an extension of the factorial function over the complex
plane. That is, Γ (x + 1) = xΓ (x), with relevant base cases Γ (1) = 1, Γ (0.5) =
√
π and Γ (0.5 + n) = (2n−1)!!√π

2n . For numerical calculations, we can use Stirling’s
approximation for the logarithm of gamma and double factorial.

	The Difference and the Norm

