
Chapter 16
Frequent Pattern Mining Algorithms
for Data Clustering

Arthur Zimek, Ira Assent and Jilles Vreeken

Abstract Discovering clusters in subspaces, or subspace clustering and related clus-
tering paradigms, is a research field where we find many frequent pattern mining
related influences. In fact, as the first algorithms for subspace clustering were based
on frequent pattern mining algorithms, it is fair to say that frequent pattern mining was
at the cradle of subspace clustering—yet, it quickly developed into an independent
research field.

In this chapter, we discuss how frequent pattern mining algorithms have been
extended and generalized towards the discovery of local clusters in high-dimensional
data. In particular, we discuss several example algorithms for subspace clustering or
projected clustering as well as point out recent research questions and open topics in
this area relevant to researchers in either clustering or pattern mining.
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1 Introduction

Data clustering is the task of discovering groups of objects in a data set that exhibit
high similarity. Clustering is an unsupervised task, in that we do not have access to
any additional information besides some geometry of the data, usually represented by
some distance function. Useful groups should consist of objects that are more similar
to each other than to objects assigned to other groups. The goal of the clustering results
is that it provides information for the user regarding different categories of objects
that the data set contains.
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As there are many different intuitions on how objects can be similar, there exist
many different clustering algorithms for formalizing these intuitions, and extracting
such clusters from data [43–45, 51]. There are two main approaches to clustering.
On the one hand we find so-called partitional algorithms [26, 49, 55, 56], where
similarity of objects is directly expressed in a notion of spatial closeness. For example,
a smaller Euclidean distance between two points than between other pairs of points
in Euclidean space makes them relatively similar. On the other hand we have density-
based approaches [8, 20, 28, 39, 40, 75, 77], where similarity is expressed in terms
of density-connectivity of points. That is, points that find themselves in a densely
populated area in the data space are said to be ‘connected’ and should be assigned to
the same cluster, whereas areas of relatively low density separate different clusters.

An important point to note for unsupervised learning in general, and clustering
specifically, is that the cluster structure of the data—and hence that discovered by
a particular clustering algorithm—does not necessarily have to correlate with class
label annotations: clusters ‘simply’ identify structure that exists in the data [29, 36].
This means both that clustering requires methods different from classification, as
well as that for evaluating clusters we cannot rely just on class labels.

Over the last 15 years, a lot of research effort has been invested to develop clus-
tering algorithms that can handle high-dimensional data. Compared to traditional
data with only few attributes, high-dimensional data incur particular challenges,
most prominently the difficulty of assessing the similarity of objects in a mean-
ingful manner. These issues are generally known as the ‘curse of dimensionality’.
Important aspects of this infamous ‘curse’ and its consequences for clustering (and
related tasks) have been discussed in various studies, surveys, and overview articles
[4, 9, 17, 18, 27, 30, 41, 42, 50, 52, 76, 83, 85].

A special family of adaptations of clustering approaches to high-dimensional data
is known as ‘subspace clustering’. Here the idea is that clusters do not necessarily
exhibit similarity over all attributes, but that their similarity may be restricted to
subsets of attributes; the other attributes are not relevant to the cluster structure. In
effect, there is a need for algorithms that can measure similarity of objects, and hence
detect clusters, over subspaces. Different subspaces can be relevant for different
clusters while the clusters can be obfuscated by the noise of the remaining, ‘irrelevant’
attributes. There exist many similarities of this problem setting to that of mining
frequent patterns, and in fact algorithmic ideas originally developed for frequent
pattern mining form the foundations of the paradigm of subspace clustering [7].

As in pattern mining, the general intuition in subspace clustering is that an ob-
ject may be a member of several clusters, over different subsets of the attributes. In
this manner, it is possible to group the data differently depending on the features
that are considered. Figure 16.1 gives an example. As we can see, the projection to
different subspaces results in different clusters, but not all dimensions contribute to
the patterns. In the leftmost projection to the subspace consisting of dimensions x

and y, two groups are visible that are different from the groups seen in the center
projection to dimensions w and z (note that symbols are consistent across the projec-
tions shown). Interestingly, the subspace y and z does not show any clear subspace
clusters. The interesting observation here is that this view of different aspects of the
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Fig. 16.1 Subspace clustering: two different groupings of the same data are seen when considering
the subspace consisting of dimensions x and y (left) or the subspace consisting of dimensions z and
w (center), whereas the subspace projection y and z (right) does not show any clear clusters

Fig. 16.2 Frequent itemset
mining: transactions for the
example are listed (left),
frequent itemsets are detected
when considering just the
combination of item a and c,
or when considering a and d,
but not when considering e.g.
c and d

Example frequenciesTransactions

a c 4 times
a d 4 times
c d not found

1 a c 
2 a c e
3 a d
4 a b c
5 a d
6 a b d
7 a d e

data is present in frequent itemset mining as well (cf. Fig. 16.2): an item can be part
of two different patterns such as {a, c} or {a, d}, but the combination of {c, d} does
not necessarily yield frequent patterns.

There are several surveys and overview articles, discussing specifically subspace
clustering [9, 50, 52, 53, 67, 74, 83], some of which also point out the connection
to frequent pattern mining algorithms. The first survey to discuss the young field
was presented by Parsons et al. [67], putting the research community’s attention
to the problem and sketching a few early algorithms. In the following years, the
problem was studied in much more detail, and categories of similar approaches have
been defined [50]. A short discussion of the fundamental problems and strategies has
been provided by Kröger and Zimek [53]. Assent gives an overview in the context
of high-dimensional data of different provenance, including time series and text
documents [9]. Sim et al. [74] discuss ‘enhanced’ subspace clustering, i.e., they
point out particular open problems in the field and discuss methods specifically
addressing those problems. Kriegel et al. [52] give a concise overview and point to
open questions as well. Based on this overview, an updated discussion was given
by Zimek [83]. Recent textbooks by Han et al. [38], and Gan et al. [31], sketch
prominent issues and example algorithms. Recent experimental evaluation studies
compared some subspace clustering algorithms [60, 63].

The close relationship between the two areas subspace clustering and frequent
pattern mining has been elaborated in a broader perspective by Zimek and Vreeken
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[84]. Here, we will go more into detail of how the ideas of frequent pattern mining
have been transferred and translated to the clustering domain, and how exactly they
have found use in various clustering algorithms. To this end, in Sect. 2 we will first
discuss the generalization of the reasoning about frequent patterns for the application
to the clustering task. We will then, in Sect. 3, detail example algorithms for both
subspace clustering and subspace search, discussing the use of ideas proposed in
frequent pattern mining in these algorithms. We conclude the chapter in Sect. 4.

2 Generalizing Pattern Mining for Clustering

For a reader of a chapter in this book about frequent pattern mining, we assume famil-
iarity with frequent pattern mining as discussed also in fundamental other chapters
in this book. In particular, we assume basic knowledge of the Apriori algorithm [6].
Nevertheless, for the sake of completeness, let us briefly recapitulate the algorithmic
ingredients of Apriori that are essential to our discussion.

Considering the example of market basket analysis, we are interested in find-
ing items that are sold together (i.e., itemsets). Naïvely, the search for all frequent
itemsets is exponential in the number of available items: we would simply cal-
culate the frequency of all k-itemsets in the database over m items, resulting in∑m

k=1

(
m

k

) = 2m − 1 tests.
For identification of frequent patterns in a transaction database (i.e., a binary

database, where each row does or does not contain a certain item), the idea of
Apriori is a level-wise search for itemsets of incremental length, given a frequency
threshold. Starting with all frequent itemsets of length 1 (i.e., counting all transactions
containing a certain item, irrespective of other items possibly also contained in the
transaction), the list of potential candidates for frequent itemsets of length 2 can be
restricted based on the following observation: An itemset of length 2 can only be
frequent if both contained items (i.e., itemsets of length 1) are frequent as well. If
neither diapers nor beer is a frequent item in the transaction database, the transaction
containing both diapers and beer cannot be frequent either. This holds for itemsets
of all lengths n, that can only be frequent if all contained itemsets of length n − 1
are frequent as well. For example, an itemset may contain items A, B, C, etc. If a
1-itemset containing A is not frequent (i.e., we find such an itemset less often than a
given threshold), all 2-itemsets containing A (e.g., {A, B}, {A, C}, {A, D}) cannot be
frequent either (otherwise itemsets containing A would have been frequent as well)
and need not be tested for exceeding the threshold. Likewise, if the itemset {A, B}
is not frequent, then all 3-itemsets containing {A, B} (e.g., {A, B, C}, {A, B, D},
{A, B, E}) cannot be frequent either, etc. Theoretically, the search space remains
exponential, yet practically the search is usually substantially accelerated.

This observation is a principle of monotonicity and is the most important ingre-
dient for a heuristic speed-up of the mining for frequent patterns. More concisely,
we can express this monotonicity over sets as follows:

T is frequent ⇒ ∀S ⊆ T : S is frequent. (16.1)
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Fig. 16.3 Pruned search space during iterative database scans of Apriori (example): itemset {C}
has been found infrequent in the first scan, therefore, itemsets {A, C}, {B, C}, {C, D} do not need
to be considered in the second scan, itemsets {A, B, C}, {A, C, D}, {B, C, D} do not need to be
considered in the third scan, etc. In this example, Apriori stops scanning the database after round
three, as there is no candidate of length 4 remaining

More precisely, the pruning criterion used in the Apriori algorithm is based on the
equivalent anti-monotonic property, describing the opposite direction of deduction:

S is not frequent ⇒ ∀T ⊇ S : T cannot be frequent either. (16.2)

In the iterative procedure of repeated scans of the database for frequent itemsets,
this anti-monotonic property allows to ignore candidates that cannot be frequent
and, eventually, this pruning allows stopping at a certain size of itemsets, when
no candidates of typically moderate size remain to generate larger itemsets (see
Fig. 16.3).

An extension of the Apriori idea for very large itemsets has been termed ‘colossal
patterns’[82]. The observation is that if one is interested in finding very large frequent
itemsets, then Apriori needs to generate many smaller frequent itemsets that are not
relevant for the result. This effect can be used positively, in that if large patterns also
have a large number of subsets, several of these subsets can be combined in order to
obtain larger candidates directly. In this sense, the idea is to avoid the full search, and
instead use some results at the bottom of the search space as a shortcut to particularly
promising candidates higher up. This approach thus trades some of the accuracy of
full search for a much more efficient frequent pattern mining algorithm. As we will
see below, both the Apriori algorithm, as well as that of colossal patterns have been
employed towards mining subspace clusters.

2.1 Generalized Monotonicity

In data clustering, we typically do not consider binary transaction data, or discrete
data in general, but instead most often study continuous real-valued vector data, typ-
ically assuming a Euclidean vector space. In this space, attributes may be noisy, or
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Fig. 16.4 Transfer of anti-monotonicity to subspace clusters

even completely irrelevant for certain clusters. If we measure similarity over the full
space, i.e., over all attributes, detecting such ‘subspace’ clusters becomes increas-
ingly difficult for higher numbers of irrelevant dimensions. To the end of identifying
the relevant attributes, and measuring similarity only over these, the fundamental
algorithmic idea of Apriori has been transferred to clustering in Euclidean spaces,
giving rise to the task of ‘subspace clustering’, which has been defined as ‘finding
all clusters in all subspaces’ [7].

Over time, this transfer has been done in different ways. The most important
variants are to identify subspace clusters that in turn qualify some subspace as ‘fre-
quent pattern’, or to identify interesting subspaces without direct clustering, but as
a prerequisite for subsequent clustering in these subspaces or as an integral part of
some clustering procedure.

Subspace Clusters as Patterns Let us consider the case of clusters in different
subspaces with an example for density-based clusters [51], as visualized in Fig. 16.4.
In the first scenario, depicted in Fig. 16.4a, we see that objects p and q are density-
connected with respect to some parameters in subspaces {A, B}, {A}, and {B}. Here,
the parameters capturing density are a distance threshold defining the radius of the
neighborhood ball and a minimum number of points required to fall within this
neighborhood ball in order to qualify as dense. That is, within these subspaces, we
can reach both p and q starting at o by ‘hopping’ from one object with at least n

neighbors within ε distance to another. This means that with these parameters, p and
q belong to the same density-based cluster in each of these subspaces.

In the second scenario, depicted in Fig. 16.4b, p and q are again density-connected
in subspace {A}, but not in subspace {B}. As a result from monotonicity, they
therefore are also not density-connected in subspace {A, B}.
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Table 16.1 Translating
frequent pattern mining
concepts to subspace
clustering

Frequent pattern mining Subspace clustering

Item Dimension (attribute)
Itemset Subspace (set of attributes)
Frequent itemset Subspace (unit) containing cluster

Consequently, a set of points cannot form a cluster in some space T , if it does not
also form a cluster in every subspace of T . Or, formulated as anti-monotone property
that we can use to prune candidate subspaces:

S does not contain any cluster ⇒ ∀ superspaces T ⊇ S : (16.3)

T cannot contain a cluster either.

As a result, an algorithm for subspace clustering can identify all clusters in all
1-dimensional subspaces, continue to look for clusters in only those 2-dimensional
subspaces that have a 1-dimensional subspace containing some cluster, and so on,
following the candidate-pruning heuristic of the Apriori algorithm. Hence we see
that the ‘items’ of Apriori translate to dimensions, ‘itemsets’ translate to subspaces,
and ‘frequent itemset’ according to some frequency threshold translates to ‘subspace
contains some cluster’ according to some clustering criterion. See Table 16.1 for a
summary of this translation. This transfer of concepts requires the anti-monotonicity
to hold for the clustering criterion used.

Note that the monotonicity does not hold in general for arbitrary cluster paradigms,
but instead depends on the particular cluster model used. The example used here
(monotonicity of density-based clusters, Fig. 16.4) has been proven for the subspace
clustering approach SUBCLU [48]. However, the very idea of using a monotonicity
for some cluster criterion has been used for different clustering models several times,
following the seminal approach of CLIQUE [7]. We detail the specific adaptations
for different clustering models in the next section.

Subspaces as Patterns In the second main variant, the setup is slightly modified,
and the goal is to identify subspaces as a prerequisite for the final clustering result.
These subspaces can be used in quite different ways in connection with clustering
algorithms. For example, after identification of subspaces, traditional clustering
algorithms are applied to find clusters within these subspaces, or distance measures
can be adapted to these subspaces in the actual clustering procedure, or clusters and
corresponding subspaces are refined iteratively. As such, in contrast to the setting
above, here one does not identify whether subspaces are ‘interesting’ by the clusters
they contain (which is specific to a particular clustering model), but rather defines
‘interesting’ more generally, for example in terms of how strongly these attributes
interact.

In subspace search, just as in subspace clustering, the ‘items’ and ‘itemsets’ con-
cepts from frequent pattern mining translate nicely to ‘dimension’ and ‘subspace’,
respectively. The notion of a ‘frequent itemset’ according to some frequency thresh-
old translates different here, namely to ‘interesting subspace’ according to some
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Table 16.2 Translating
frequent pattern mining
concepts to subspace search

Frequent pattern mining Subspace search

Item Dimension (attribute)
Itemset Subspace (set of attributes)
Frequent itemset ‘Interesting’ subspace

measure of ‘interestingness’ (see Table 16.2 for a summary). How to measure this
‘interestingness’ in a way to satisfy anti-monotonicity is the crucial question that
differs from approach to approach. Let us note that many methods follow the general
idea of candidate elimination in subspace search without adhering to a criterion of
strict anti-monotonicity, i.e., they rely on some observation that anti-monotonicity
of their criterion ‘usually’ holds.

2.2 Count Indexes

Generalized monotonicity is a very useful property towards pruning the search space
in both frequent itemset mining and subspace clustering. As part of the Apriori algo-
rithm, however, candidate itemsets or subspaces have to be generated. For large sets
of items and high-dimensional subspaces (i.e., subspaces with very many attributes),
this can be a performance bottleneck [37].

Taking a different approach, the so-called FP-Growth algorithm uses a special-
ized index structure to maintain frequency counts of itemsets, the FP-tree [37]. As
illustrated in Fig. 16.5, a node in this count index corresponds to the frequency count
of a particular item, and following a path from an item to the root corresponds to
the frequency count of a particular combination of items into an itemset. The index
can be constructed in two data scans, where the first finds all frequent items, and the
second creates nodes and updates counts for each transaction.

The FP-Growth algorithm is a depth-first approach. Starting from the most
frequent item, the corresponding combinations with other items are ‘grown’ by re-
cursively extracting the corresponding paths, until the index has been reduced to one
path. The advantage of this method is that only frequent itemsets are generated, and
that only two scans over the data are necessary in order to do so.

As we will detail in the next section, this idea of compactly representing interesting
combinations in a count index and of proceeding in a depth-first traversal of the
search space has also been applied to subspace clustering. This application is not
straightforward due to the fact that both relevant subspace regions, as well as a
notion of similarity between adjacent regions has to be defined; concepts that do not
have one-to-one counterparts in frequent pattern mining.

2.3 Pattern Explosion and Redundancy

The downside to the frequency criterion and its monotonicity in frequent itemset
mining is that with a threshold low enough to avoid exclusion of all but the most
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Frequencies

a:4
b:1
c:4
d:3

Transactions
1 a c 
2 a c d
3 a d
4 a b c
5 c d

d:1c:3

b:1

d:1

d:1

a:4 c:1

Fig. 16.5 FP-tree example: the tree nodes store items and their counts, paths correspond to combi-
nations of itemsets and their respective counts. The index is built in just two scans over the data, and
the frequent itemset mining algorithm FP-Growth works exclusively on the index. Once individual
item frequencies are established, the second scan updates counts for each transaction or creates new
nodes where necessary

common (and therefore not really interesting) itemsets, the frequent itemsets will
usually be abundant and therefore, as a result of data exploration, not be useful either.
In frequent pattern mining, this phenomenon is known as the pattern explosion. By
the exponential size of possible subspaces, and type of interestingness measures,
subspace clustering inherited this problem with the transfer of the techniques from
frequent pattern mining. For non-trivial thresholds usually huge sets of subspace
clusters are discovered—which are typically quite redundant.

Different means have been studied to condense the result set of patterns or to
restrict the search space further in the first place.

One approach among others is mining or keeping only those itemsets that can-
not be extended further without dropping below the threshold, i.e., the maximal
frequent itemsets [16]. An alternative approach uses borders to represent a lossless
compression of the result set of frequent patterns, named closed frequent itemsets
[68]. Another branch of summarization is that of picking or creating a number of
representative results. Yan et al. [78] choose a subset of results such that the error
of predicting the frequencies in the complete result set is minimized. Mampaey et
al. [57] give an information theoretic approach to identifying that subset of results
by which the frequencies in either the complete result set, or the data in general, can
best be approximated. To this end, they define a maximum entropy model for data
objects, given knowledge about itemset frequencies. The resulting models capture
the general structure of the data very well, without redundancy.

Just as the basic techniques for frequent pattern mining, also these ideas for con-
densing the result, as well as restricting the search space, have found corresponding
solutions to the problem of redundant results in subspace clustering.
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3 Frequent Pattern Mining in Subspace Clustering

3.1 Subspace Cluster Search

As mentioned above, CLIQUE [7] introduced the first subspace clustering algorithm
using a monotonicity on the subspace search space. The approach uses an equal width
discretization of the input space and a density threshold per cell. A subspace cluster
is a maximal set of connected dense cells in some subspace. As a consequence, the
approach operates also algorithmically at the cell level. The monotonicity used is
that a dense cell in a k-dimensional subspace is also a dense cell in all its k − 1
dimensional subspaces:

C is a cluster in subspace T ⇒ (16.4)

C is part of a cluster in all subspaces S ⊆ T

Based on the corresponding anti-monotonicity, Apriori is applied from 1-dimensional
dense cells in a straightforward fashion to find all higher-dimensional dense cells. As
a variation of this base scheme, an approximation is suggested that prunes subspaces
from consideration if their dense cells do not cover a sufficiently large part of the
data.

MAFIA [65] extends the cell-based approach by adapting the cell sizes to the data
distribution. The general approach is to combine neighboring cells in one dimension
if they have similar density values. The monotonicity used is the same as in CLIQUE,
but additionally, a parallel algorithm is introduced that processes chunks of the data
on local machines that communicate to exchange cell counts at each level of the
subspace lattice. XProj [5] is an adaptation of the CLIQUE idea to clustering of
graph data based on frequent sub-graphs and was applied to cluster XML data. In
contrast to CLIQUE, XProj looks for a hard partitioning, rather than overlapping
clusters.

CLIQUE and MAFIA may miss points or subspace clusters depending on location
and resolution of the cells (see for example Fig. 16.6), so later works have proposed
bottom-up algorithms that do not rely on discretization. SUBCLU [48] follows the
density-based subspace clustering paradigm. As already illustrated in Fig. 16.4, sub-
space clusters are maximal sets of density-connected points. Any subspace cluster
projection to a lower dimensional subspace is a density-connected set again (albeit
not necessarily a maximal one). Anti-monotonicity is used in that if a subspace does
not contain a density-based subspace cluster, then no superspace will either.

Note that this approach means that the notion of frequent patterns is also different
than in CLIQUE and MAFIA: in these cell-based approaches, a (frequent) item is a
(dense) cell in a particular subspace, whereas in SUBCLU (and later approaches) it is
the entire subspace. In SUBCLU, the Apriori principle is used to generate candidate
subspaces within which the actual subspace clusters are determined.

The DUSC [10] approach relies on a different definition of density than SUBCLU
does. Based on the observation that a fixed density assessment is biased and favors
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Fig. 16.6 Standard grid-based discretization as used e.g. in CLIQUE: the accuracy of subspace
clustering depends on location and resolution of the grid. A minimum cell count of more than three
will miss the subspace cluster at the bottom right, whereas a minimum cell count of three will also
report cells that contain a few isolated noise points (e.g., cell at the center right)

low dimensional subspace clusters over high-dimensional ones, the density measure
is normalized by the expected density. This means that (anti-)monotonicity is lost,
and standard application of Apriori is not possible. However, as proposed in a later
extension, it is possible to use the anti-monotonicity as a filtering criterion in a
multistep clustering scheme (EDSC) [11]. The idea is to generate a conservative
approximation of subspace clusters based on cells that are merged if potentially
density-connected. Similar in spirit to the anti-monotonicity in Apriori, pruning is
based on the weakest density measure as a filter step.

The idea of avoiding full lattice search in favor of more efficient runtimes (i.e.,
the colossal pattern idea [82] we saw above) is also found for subspace clustering
[64]. Instead of analyzing all subspaces, and the entire value ranges within these
subspaces, the idea is to represent subspace clusters at different levels of approxima-
tion. Using the number of objects within the current approximation as an indication,
potential combinations with other subspaces are used as an indication of higher-
dimensional subspace clusters. Priority queues are maintained in order to generate
the most promising candidates in the lattice first. As a result, it becomes possible
to avoid the generation of many relatively low-dimensional subspace clusters and to
steer the search towards high-dimensional subspace clusters directly.

Another interesting connection to frequent pattern mining is discussed with the
algorithm INSCY for density-based subspace clustering [12]: subspace clusters are
detected based on a frequent cell count data representation, an index structure that
is similar in spirit to the FP-tree from frequent itemset mining. As mentioned in
the previous section, the challenge here is two-fold: first, to define an adequate
representation of subspace regions (the items), and second, to identify similarities
among these subspace regions. For the first part, a discretization technique as in
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Fig. 16.7 Grid with density-preserving borders: to guarantee detection of all density-based subspace
clusters, the grid is enhanced with borders (gray shaded) at the top of each cell in each dimension.
These borders have exactly the size of the area for the density assessment (circles around points in
the clusters at the bottom right), so that an empty border means that no cluster extends across these
two cells

EDSC [11] is used, which consists of a traditional equal-width grid, plus density-
preserving borders. Figure 16.7 illustrates the general idea: the density-preserving
borders make it possible to determine whether points in one cell are potentially
density-connected to those in a neighboring cell. They are the size of the area used
for density assessment (circles around points in the figure). If a subspace cluster
extends across one of these borders, this border must be non-empty. If that should
be the case, these cells need to be merged during mining.

A SCY-tree is constructed, which similar to item frequency counts in FP-trees
contains counts of the number of points in a particular grid cell. In addition, marker
nodes are introduced to signal that the border between neighboring cells is non-
empty. An example is given in Fig. 16.8. As we can see in this example, the ten
points that are in the bottom ‘0’ slice of the y-dimension (leftmost node under the
root in the tree), fall into three different intervals in the x-dimension: two in cell
‘1’, three in cell ‘2’, and five in cell ‘3’ (three child nodes). Additionally, a node
marks the presence of one or more points in the border of cell ‘2’ by a special node
without any count information. Similar to FP-Growth, it is then possible to mine
subspace clusters in a depth-first manner. Different levels of the index correspond
to the dimensions in which these cells exist. As opposed to frequent itemset mining,
neighboring nodes are merged if they contain cells that are potentially part of the
same cluster.

3.2 Subspace Search

Subspace search based on frequent pattern mining concepts has been applied both in-
dependently of specific clustering algorithms, as well as integrated in some clustering
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Fig. 16.8 SCY-tree index for depth-first mining of subspace clusters. Nodes contain cell counts as
in frequent itemset mining. Levels correspond to different dimensions, and additional marker nodes
indicate that a border is non-empty and that cells need to be merged during mining. For example,
the gray shaded node labeled ‘2’ at the bottom corresponds to the non-empty border of cell ‘2’ in
dimension x in Fig. 16.7

algorithm yet independent of the cluster model. In the first scenario, we can regard
subspace search as a global identification of ‘interesting’ subspaces—subspaces in
which we expect clusters to exist—and hence as a restriction of the search space. In
the second scenario, we observe a local identification of ‘interesting’ subspaces. A
typical use case of these ‘locally interesting’ subspaces is to adapt distance measures
locally, that is, for different clusters, different measures of similarity are applied.

Global Subspace Search ENCLUS [21] is based on an assessment of the subspace
as a whole, i.e., a subspace search step proceeds the actual subspace clustering. In
order to determine interesting subspaces, Shannon Entropy [73] is used. Entropy
measures the uncertainty in a random variable, where a high value means a high
level of uncertainty. A uniform distribution implies greatest uncertainty, so a low
entropy value (below some threshold) is used as an indication of subspace clusters.
Similar to CLIQUE, the data are discretized into equal-width cells before entropy
assessment. Monotonicity is based on the fact that an additional attribute can only
increase the uncertainty and thereby the Shannon Entropy:

T has low entropy ⇒ ∀S ⊆ T : S has low entropy. (16.5)

Besides this Apriori bottom-up part of the algorithm, an additional mutual infor-
mation criterion is used for top-down pruning. Interesting subspaces in this sense are
those with an entropy that is lower (by some threshold) than the sum of the entropy
of each of its one-dimensional subspaces. Using both criteria, the most interesting
subspaces for subspace clustering according to ENCLUS are located neither at the
top nor at the bottom of the subspace search space, but at some medium dimension-
ality. This resembles the concept of borders in frequent itemset mining (Sect. 2.3).
While there borders are used to derive a condensed representation of the result set,
here, the result set is restricted to reduce the redundancy of too many clusters.

For RIS (Ranking Interesting Subspaces) [47], subspaces are ‘interesting’ if they
have a large number of points in the neighborhoods of core points (i.e., points with a
high local point density according to some thresholds), normalized by the expected
number of points assuming uniform distribution. While this criterion adopts a density-
based notion [51] of ‘interesting’, it is not tied to a specific clustering algorithm.
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These subspaces are hence expected to prove interesting for various density-based
clustering algorithms. While monotonicity of this quality criterion is not proven in
general, we do know that the core point property is anti-monotonic:

o is not a core point in S ⇒ (16.6)

∀T ⊇ S : o is not a core point in T .

A similar approach, SURFING (SUbspaces Relevant For clusterING) [15], also
following a density-based notion of ‘interestingness’, assesses the variance of k-
nearest neighbor distances. �-dimensional subspaces can be rated as ‘interesting’,
‘neutral’, or ‘irrelevant’ in comparison to (� − 1)-dimensional subspaces, but this
rating is not monotonous. Accordingly, the subspace search of SURFING follows the
Apriori idea of early pruning of candidates only heuristically but does not formally
implement the strictly anti-monotonic candidate elimination.

CMI (Cumulative Mutual Information) [66] is a measure to assess the correlation
among the attributes of some subspace and is used to identify subspaces that are
interesting w.r.t. a high contrast, that is, they are likely to contain different clusters.
The authors assume monotonicity of this contrast criterion to facilitate a candidate
elimination-based search starting with two dimensional subspaces. As a priority
search, generating candidates from the top m subspaces only, their algorithm is
more efficient than the Apriori search at the expense of completeness of the results.
Finally, subspaces contained in another subspace reported as a result are dropped
from the resulting set of subspaces, if the higher-dimensional subspace also has
higher contrast.

Local Subspace Search Subspace search has also been incorporated locally into
clustering algorithms. DiSH [1], similar to its predecessor HiCS
citeclu:AchBoeKriKroetal06, follows a pattern of cluster search that is different from
the Apriori-based subspace clustering idea discussed so far. Appropriate subspaces
for distance computations are learned locally for each point, then the locally adapted
(subspace-) distances and the dimensionality of the assigned subspace are used as a
combined distance measure in a global clustering schema similar to OPTICS [8] to
find hierarchies of subspaces.

For learning the most appropriate subspace for each data point both HiCS and
DiSH assign a ‘subspace preference vector’ to each object, based on the variance
of the neighborhood in each attribute. As such, the clustering procedure does not
make use of an efficient frequent pattern search algorithm. However, while HiCS
uses the full-dimensional neighborhood and studies the variances of the neighbor-
hoods in attribute-wise projections, DiSH starts with attribute-wise neighborhoods
and combines those neighborhoods in a bottom-up procedure. Here, an Apriori-like
search strategy is one of the suggested alternatives, employing the monotonicity of
neighborhoods in projections of the data. If S is a subspace of T , then the cardinality
of the ε-neighborhood of some object o in T is bound to be at most the cardinality
of the ε-neighborhood of the same object o in S:

S ⊆ T ⇒ ∣∣N T
ε (o)

∣∣ ≤ ∣∣N S
ε (o)

∣∣ (16.7)
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This holds, e.g., for LP -type distances (P ≥ 1, for example the commonly used
Euclidean distance), because distances between the points can never shrink when
adding more dimensions. Let us note that this is also the reason why the core point
property is anti-monotone (cf. Eq. 16.6).

In a similar way, CFPC [80] (‘MineClus’ in an earlier version [79]) improves by
a frequent pattern mining-based approach the subspace search strategy of an earlier
projected clustering algorithm, DOC [71]. As projected clustering approaches, both
pursue a local subspace search per (preliminary) cluster. A typical projected cluster-
ing algorithm, following the seminal approach of PROCLUS [3], starts with some
initial assignment of points to clusters. Then, the optimal projection (subspace) of
each cluster and the assignment of points are iteratively refined. In DOC, random-
sampling was applied to find the most suitable subspace for a potential cluster. CFPC
replaces this random sampling strategy by a technique related to FP-growth. A poten-
tial cluster is defined by its potential (in both approaches randomly sampled) medoid
p. For all points q, an itemset includes those dimensions in which q is close to p. A
large, frequent itemset would therefore correspond to a projected cluster with many
points and high dimensionality. To find the best cluster and its optimal projection,
FP-growth is applied over this modelling of frequent itemsets.

The projected clustering algorithm P3C [58, 59] does also incorporate an Apriori-
like local subspace search, but in yet another variant. The basic idea of P3C is to find
cluster cores starting with “p-signatures” that are intervals of some subset of p dis-
tinct attributes, i.e., subspace regions. Roughly, such a p-signature qualifies as a clus-
ter core if and only if its support, i.e., the number of points falling into this subspace
region, exceeds the expected support under some assumptions concerning the point
distribution, and if this happens by chance (Poisson probability) less likely than spec-
ified by some (Poisson-)threshold. By these conditions, p-signatures qualifying as
cluster cores can be generated using an Apriori-like candidate elimination procedure.

3.3 Redundancy in Subspace Clustering

As pointed out above, redundancy of subspace cluster results is a problem inherited
from the Apriori strategy for traversing the search space of subspaces. As a conse-
quence, for current research on subspace clustering, reducing redundancy is a major
topic. As we have seen, the concept of borders found analogous use already in the
early subspace search algorithm ENCLUS [21] for restricting the search space. Some
approaches mine or report the most representative clusters as solutions [13, 61]. This
is related to picking or creating a number of representative results in frequent pattern
mining. Also the idea of restricting results of frequent pattern mining to the maxi-
mal frequent itemsets found a correspondence in subspace clustering. For example,
nCluster [54], CLICKS [81], or MaPle [69] mine those subspace clusters of maximal
dimensionality.

Other variants of clustering algorithms outside subspace clustering that also tackle
high-dimensional data face a similar problem. For example, multiview clustering
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[19, 22, 34, 46] approaches the problem from the opposite direction. It is based on
the notion of semantically different subspaces, i.e., multiple representations for the
same data. We cannot generally assume to know the different semantics of subspaces
beforehand and, accordingly, could find results in overlapping subspaces. As a con-
sequence, these approaches allow some redundancy between resulting clusters. A
certain partial overlap between concepts is allowed in order to not exclude possibly
interesting concepts.

A related though distinct way of addressing the problem of redundancy and dis-
tinctiveness of different clusters is to seek diverse clusterings by directly assessing a
certain notion of distance between different partitions (so-called alternative clustering
approaches [14, 23, 24, 25, 32, 33, 35, 70, 72]). Starting with one clustering solution,
they search for an alternative clustering solution that provides substantially differ-
ent insights. Still, alternative clustering solutions are allowed to not be absolutely
orthogonal but to show some redundancy with existing clustering solutions.

Apparently, to avoid redundancy as more ‘enhanced’ [74] subspace clustering al-
gorithms try to do should not be pursued as an absolute goal. Multiview clustering and
alternative clustering come from the other extreme and relax the original restriction
of ‘no redundancy’ more and more. Relationships between subspace clustering and
other families of clustering approaches have been discussed by Zimek and Vreeken
[84].

A question related to the redundancy issue is that of the appropriate density level.
Both of these issues have decisive influence on the clusters that are selected. Deter-
mining the right density level is a general problem also in full space density-based
clustering [51], but for clustering in subspaces, the problem is even more severe. Set-
ting a fixed density threshold for an Apriori style subspace search is not appropriate
for all possible subspaces. Consider for example any CLIQUE-style grid approach:
the volume of a hypercube increases exponentially with the dimensionality, hence the
density decreases rapidly. As a consequence, any chosen threshold introduces a bias
to identify clusters of (up to) a certain dimensionality. This observation motivates
research on adaptive density thresholds [10, 62]. The algorithmic challenge then
comes from loss of monotonicity that would allow efficient traversal of the search
space of subspaces.

When using Euclidean distance (L2), the appropriate choice of an ε-range becomes
extremely challenging as well due to the rather counter-intuitive behavior of the
volume of the hypersphere with increasing dimensions. Let us note that, for outlier
detection, the very same problem occurs in high-dimensional data, which has been
discussed in detail by Zimek et al. [85]. Choosing the size of the neighborhood in
terms of objects rather than in terms of a radius (i.e., using k nearest neighbors instead
of an ε-range query) has been advocated as a workaround for this problem [2], to
solve at least certain aspects such as having a well-defined (non-empty) set of objects
for the density estimation or spatial properties of the neighborhood.
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4 Conclusions

This chapter discusses the close relationship between frequent pattern mining and
clustering, which might not be apparent at first sight. In fact, frequent pattern mining
was the godfather of subspace clustering, which developed quickly into an indepen-
dent and influential research area on its own. We showed how certain techniques
that have been originally developed for frequent pattern mining have been trans-
ferred to clustering, how these techniques changed in their new environment, and
how the drawbacks of these techniques—unfortunately transferred along—raised
new research questions as well as interesting solutions in the area of data clustering.
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