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ABSTRACT
Supporting exploratory search is a very challenging prob-
lem, not least because of the dynamic nature of the exercise:
both the knowledge and interests of the user are subject to
constant change. Moreover, whether the results for a query
are informative is strongly subjective. What is informative
to one user, is too specific for the other; specificity differs
between users depending on their intent and accumulated
knowledge about the domain.

We propose a formal model—motivated by Information
Foraging Theory—for predicting the subjective specificity
of search results based on simple observables such as result-
clicks. Through two studies including both controlled and
free-form exploratory search we show our model allows us
to differentiate between levels of subjective result specificity
with regard to the current information need of the user.

Categories and Subject Descriptors
H.1 [Models and Principles]: User/Machine Systems—
Human information processing

Keywords
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1. INTRODUCTION
Search tasks are commonly divided into two broad types:

navigational, or known-item search, and exploratory search.
In the former the user has specific search results in mind,
while in the latter the problem is open ended, the user does
not yet know exactly what she wants to find, and her goals
may change as the search progresses [19, 36]. Traditional
information retrieval (IR) techniques concentrate mostly on
known-item search. Exploratory search is less well-studied,
even though it is rapidly gaining importance as more and
more knowledge is available through the web and knowledge
bases [25]. While exploratory search is naturally challenging
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for users, at the same time it is also rather difficult for IR sys-
tems to offer support: search goals are poorly defined, users
lack knowledge to formulate precise queries, user knowledge,
search goals and information needs can all change through-
out the search process [25, 36]. Recent years show an in-
creased interest in techniques to support exploratory search,
such as novel user interfaces [24], retrieval techniques [2, 6,
14], and studies of exploratory search [3, 24, 25]. One of the
key open problems is that we need a better understanding
of the dynamic nature of the user’s information needs in ex-
ploratory search. In this paper we formalize a model that
allows us to estimate the specificity of search results with
respect to the user’s subjective information need.

Exploratory search starts when a user has an interest in
finding information on a topic in which she has little or
no knowledge [36]. Generally, the user starts with vague
queries using broad search terms, which allows them to ob-
tain cues about new keywords and repetitively reformulate
queries with specific terms [36]. Formulating good queries,
however, is difficult—as is reformulating queries when the
results are not satisfactory. When users try out queries ex-
ploratorily, some queries will return results that are overly
specific with regard to the knowledge of the user by going
into far too much detail. Alternatively, results can also be
too broad, covering so many sub-topics that it is difficult for
the user to get an overview.

For example, consider an undergraduate who has just
started a course on data mining issuing “data mining” as
her first query to explore this domain. Data mining is a
broad subject and so the search results might cover a di-
verse information scope, which might make the results too
broad for the user. Later this user might obtain cues about
a new keyword “subgroup discovery” and formulate a new
query. If the user has gained sufficient knowledge on this
topic, then the search results might be just right for her.
If not, however, then the search results may contain very
specific technical details that are not comprehensible for a
novice and so the user might find the results too narrow.

We are interested in modeling the specificity of search re-
sults with respect to the user’s information need, which we
refer to as subjective result specificity, here on we use “sub-
jective specificity” as a short hand. We envision IR sys-
tems that automatically detect the subjective specificity of
a result so that they can effectively support the user’s ex-
ploratory search. In particular, depending on the subjective
specificity, users will benefit from different types of support.
For example, if the results are too broad, then visualizations
of the information space and guided tours would help the



user to understand the new domain [14, 16]. If the results
are too narrow, users might prefer introductory material ex-
plaining the new concepts, such as Wikipedia articles, or
literature reviews [3]. Subjective specificity detection is also
useful for IR systems supporting exploratory search through
techniques such as results clustering, keyword suggestion or
query expansion to determine whether the generated results
are too broad or narrow for the user. To the best of our
knowledge, there is no prior work for estimating subjective
specificity in exploratory search.

We formalize a model that allows an IR system to infer
subjective specificity from easily observable aspects of user
behavior. That is, our model relies only on implicit click
data, and we do not require any extra sensors such as eye-
trackers [7]. Further, our model is sensitive in a predictable
manner to moderating factors such as prior search experi-
ence and in-session learning.

The model captures how information gain [27] in explo-
ration behavior is affected by the subjective specificity. We
define information gain as the number of search results that
a user clicks expressed as a function of the number of search
results seen by the user. We assume that the information
gain follows a natural logarithmic distribution. We adapt
the formalism of Information Foraging Theory (IFT) [27] to
predict how the slope of the information gain curve, the rate
at which users click results, changes when subjective speci-
ficity becomes low (broad) or high (narrow) with respect to
the user-specific reference curve.

The key idea is that the same search result can have very
different information content for a user depending on how
well it matches her current information needs. Consider the
user in our previous example with two search queries: “data
mining” and “subgroup discovery”. The first query would
retrieve broad results that include information about many
areas, inviting the user to explore further. Consequently,
the user would spend more time on every item [33], hence a
higher slope of the curve. The second query would retrieve
too narrow results with overly specific titles that make lit-
tle sense to a novice, so she would probably estimate only
few items as informative and worthy of further exploration,
making the slope of the information gain curve shallow.

To evaluate our model, we design two experiments that
capture the key elements of exploratory search. We focus
on information-gathering [19] in the context of scientific es-
say writing—but note that our modeling approach is suited
for other tasks as well. In the first study, we let computer
science students explore scientific information to gather ma-
terial for an essay on a domain they are not familiar with.
We varied the subjective specificity at three levels (broad,
intermediate, and narrow) and the order in which these ap-
peared in a search session. It is our belief that this is the first
study to manipulate the subjective specificity in a search ses-
sion consisting of several searches on the same topic. In the
second study, we consider the natural setting of free-form
exploratory search, having users explore a topic of their in-
terest. Empirical evaluation shows that our model estimates
subjective specificity well in both settings.

In summary, our main contributions are: 1. a formal model
to predict subjective specificity based on user behavior; 2.
extensive empirical validation of the model; including 3. ex-
amination of moderating factors, such as prior search expe-
rience and in-session learning.

2. RELATED WORK
In recent years, exploratory search has attracted attention

from, among others, IR, HCI, and cognitive science research
communities. Below, we review contributions of these com-
munities to understand user behavior, and develop retrieval
techniques and user models to support exploratory search.

2.1 Studies of Exploratory Search Behavior
We briefly review studies on exploratory search to un-

derstand how user strategies affect observable exploratory
search behavior. Overall, they clearly point to the dynamic
nature of the exploratory search process which motivates
our model. According to prior studies, exploration begins
with concept formulation and then it narrows down to more
specific concepts [36, 25], and as domain knowledge changes
so do search tactics [37]. Previous studies provide detailed
descriptions of exploratory search strategies such as narrow-
ing and broadening search queries [31, 30, 33], users spend-
ing more time evaluating unfamiliar topics than familiar
ones [20], change in search behavior with increasing domain
knowledge [34]. Prior studies show that people with ex-
ploratory information needs are inclined to click more results
following a query [36]. Literature suggests that users browse
many results at the beginning of complex search tasks but
they become selective when search goals become clearer [33].

2.2 Techniques to Support Exploratory Search
IR and machine learning communities propose several tech-

niques to facilitate exploratory search. Some of the initial so-
lutions include result clustering [8], relevance feedback [22],
and faceted search [40]. However, these techniques are rarely
used in practice, perhaps due to the high additional cogni-
tive load of providing feedback for a large number of items
[22]. In response, new techniques were designed to visu-
alize search results and engage the user into the feedback
loop. Some of them include interactive visualizations com-
bined with learning algorithms to support users to com-
prehend the search results [6], and visualization and sum-
maries of results [24]. These solutions give users more con-
trol, however, they do not adapt to the moment-by-moment
information-needs of the user [32]. Recently, reinforcement
learning (RL) techniques have been used to facilitate ex-
ploratory search [14, 21, 29]. These systems look promis-
ing, however, the modeling process can take a few iterations
while the user has to deal with suboptimal results. With the
help of our model, RL-based and other adaptive exploratory
search systems could improve their performance.

2.3 Models of Information-Seeking
Many models of information-seeking have been designed

to disambiguate user behaviors in known-item search, in-
cluding search satisfaction [11, 17], frustration [9], and strug-
gling [18]. Other related work includes models using eye-
gaze [7] to predict the domain knowledge of the searcher,
however, such models require extra sensors such as eye-
trackers and are not sensitive to in-session knowledge gain
and changes in user interests [37]. There exist probabilistic
models for predicting the next interactions of the searcher [9],
disambiguating short-term search interests [35], and esti-
mating the relevance of results to information need [1]. Prior
work suggests that there is a positive correlation between
the information need specificity and query length [26]. How-
ever, in exploratory search users may issue queries of varying
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Figure 1: Hypothetical example of information gain as a
function of the number of articles seen, and clicked to be
explored in closer detail (Seen–Clicked). gu(n) is the user-
specific effective information gain function. Our model pre-
dicts that the gradient of this Seen–Clicked curve increases
(e.g., gbroad(n)) when results become more broad, and the
gradient decreases (e.g., gnarrow (n)) when the results become
more specific than the current information need of the user.

lengths with little understanding. This work shows the im-
portance of user models in improving IR systems. Despite
the benefits, the development of user models for exploratory
search has seen little research attention.

Exploratory information-seeking is related to Information
Foraging Theory (IFT) [27]. IFT includes several quantita-
tive models of user search. The key idea is that decisions
on what to do are made according to the expectation of
information gain. As a user is searching and learning more
about the content, she is continuously updating“information
scent”, i.e. her estimate of information gain by selecting a
particular item. Information scent, in turn, affects whether
to investigate an element or not. The theory makes predic-
tions on how information gain, expressed as a function of
time, changes with interface design [8]. When search results
are unordered, information gain is a linear function of time.
When they are ordered, it shifts to a diminishing returns
curve. IFT has been used to explain how presentation tech-
niques, such as result clustering, change the information gain
rates and when is the optimal time to stop searching. More
recently [13] used information scent to predict rankings of
links. Existing work on IFT, however, does not consider the
effect of specificity of search results and user-specific param-
eters, such as background knowledge. While IFT shows the
basic shape of the gain function, it does not give a mathe-
matical formulation that we can use in an IR system.

Berry-picking [5] is another human-centered model that
assumes search is a constantly evolving phenomenon with
the user constantly updating her cognitive model of the in-
formation being searched for. Like IFT, this model lacks a
quantifiable formal approach that can be easily applied in
an IR system. We contribute to IFT by providing a formal
model that allows us to predict subjective specificity in ex-
ploratory search thus allowing IFT to be incorporated into
an IR system.

3. MODEL OVERVIEW
Our goal is to predict the effect of subjective specificity on

exploratory information-seeking where multiple search en-

gine result pages (SERPs) are examined. We aim to capture
the iterative and evolving nature of search, i.e. as the user
explores a new domain, the search results become narrower
and user knowledge expands.

Our model links two observable aspects of user exploratory
behavior into what we call effective information gain, i.e. 1.
the number of search results seen on a list; 2. number of
search results clicked. By clicked we mean the action of
opening a link to a search result for further investigation.
We introduce a formal model for the effective information
gain, (g), curve of a user, (u), as a function of the number of
result items seen, (n), as shown, gu(n), in Figure 1. We refer
to this graph as the Seen–Clicked curve. Any gain function
is affected by the objective relevance of the search results.
In our case, when results are ranked according to relevance,
the function takes the shape of a diminishing returns curve.

We describe the relationship as a logarithmic regression
model parameterized by λ and α:

gu(n) = λ ln(n) − α (1)

where n is the number of items seen so far on a result list
which is a positive integer with no upper bound and λ deter-
mines the slope of this curve. α is a case-specific term which
affects the maximum gain—it is determined by several fac-
tors; subjective specificity and case-specific factors such as
the search task, and the maximum number of search results
the user is expecting to gain. We make an assumption that
when n is one item, α is -1 if the subjective specificity is
broad and 0 otherwise. However, in reality n will be greater
than one. We used a logarithmic function to capture the
information gain, (g), as this is the most natural foraging
distribution [15] commonly used in human behavior models
[10]. In our model, we focus on the gradient of the gain
function, λ, which is dependent on two parameters:

λu: user-specific factor

λr: results–specificity factor

The user-specific factor, λu, may depend on the user’s ex-
perience with exploratory information-seeking or the search
tool. For every user of a search tool a distinct Seen–Clicked
curve is defined by λu. The gu(n) curve plotted in Figure 1
shows an instance of such a Seen–Clicked graph.

The results–specificity factor, λr, determines the effect
of the subjective specificity on the gradient of the curve.
For search results with high subjective specificity, narrow,
the gradient of the curve reduces to a new effective gain
function, as shown in graph gnarrow (n) in Figure 1. An in-
stance of a Seen–Clicked curve for search results that have
low subjective specificity, broad, is shown in gbroad(n). Al-
though a single click carries little information about sub-
jective specificity, our empirical data show that aggregated
clicking behavior on a result page suffices for distinguishing
among three levels (broad, intermediate, narrow).

An IR system would monitor the clicking and viewing ac-
tions of a user in a session. It would derive λu from the
user’s previous session, and throughout a given session it
would derive λr from the user actions. Thus, the gain func-
tion in Equation 1 can be a combination of λu and λr:

gu(n) = λrλu ln(n) − α. (2)

A parameterized model predicts the subjective specificity
of SERPs for the user and then compares the gradient of the



Seen–Clicked graph based on the user’s clicks in a current
query with that of the user’s baseline Seen–Clicked graph.
Such a baseline graph can be constructed by observing the
everyday interactions of a user with a search tool. Then, if
this user formulates a particular query to explore a research
topic, the gradient of the new Seen–Clicked graph can be
compared against the gradient of her baseline graph, and so
the system can predict whether the search results are too
narrow or too broad for her information-need—and adjust
the behaviour of the system accordingly.

4. STUDY 1: CONTROLLED QUERY
The purpose of this study is to validate our model in a

controlled setting as well as explore how prior experience
and in-session learning affect the model. To this end, we
designed the study by manipulating subjective specificity at
three levels and permuting them over a session consisting of
three result pages.

4.1 Pre-Study: User Observations
Prior to Study 1, we observed the information seeking be-

havior of computer scientists in order to understand their
natural exploratory search behaviors. Our sample included
two participants from each category: PhD students, post-
doctoral and senior researchers. We asked them to inform us
when they are exploring literature for a real need. We then
visited their workstations and uninterruptedly observed and
video recorded their search process. Based on these obser-
vations and prior work [4], we identified a common search
strategy in exploratory search which initiates with query
formulation, followed by scanning the SERP while clicking
links of results that seem interesting. According to our ob-
servations, users process the clicked links after scanning the
SERP. This information helped us to plan the design pa-
rameters of the data collection process.

4.2 Participants
We recruited 24 university-based computer science research-

ers who were not overly familiar with the topics of the search
tasks. We selected computer science researchers as these
generally have much experience with electronic literature
search tools [3]. In order to explore the influence of prior
experience on our model, we selected participants with vary-
ing levels of experience, that is, MSc and PhD students. Ten
of the participants were in the process of writing their mas-
ter’s thesis and 14 were PhD students. Nine of the partici-
pants were female and 15 were male. The average age of the
participants was 26.7 years, with the minimum age being
23 and the maximum 37. With a pre-study questionnaire
we quantified their experience with scientific information-
seeking (mean ± std .dev) [ PhD students (5.6 ± 1.2), MSc
students (5 ± 1.7)], frequency of exploratory search [PhD
students (4.0 ± 1.03), MSc students (3.7 ± 1.6)] (ratings are
given in a 7 point Likert scale where 1 =“not at all famil-
iar/never” and 7 = “very familiar/often”). Table 1 reports
the search topics and participant’s familiarity with them.

4.3 Design, Tasks, Materials, and Procedure
The study involved performing exploratory search on dif-

ferent topics. Every task involved going through three article
lists generated from three queries that retrieved results with
varying specificity: broad (B), intermediate (I) and narrow
(N). The broad results covered a wide information scope;

Table 1: Tasks and queries used in the study. (B = Broad,
I = Intermediate, N = Narrow). Familiarity with search
topics is rated in a 7-point Likert scale and mean ± standard
deviation of the participants’ familiarity with each topic is
given below the topic.

Topic,
Familiarity Query

Clustering B Clustering
(3.66 ± 1.57) I Density-based clustering

N Subspace clustering

Data mining B Data mining
(2.96 ± 1.46) I Pattern mining

N Subgroup discovery

Data privacy B Database privacy
(1.75 ± 1.03 ) I Differential privacy

N Differential privacy with
continual leakage

Encryption B Encryption
(2.38 ± 1.21 ) I Identity-based encryption

N Certificateless encryption

Ergonomics B Ergonomics
(1.67 ± 1.09 ) I Task ergonomics

N EMG in ergonomics studies

Security B Computer Security
(2.45 ± 1.06 ) I Computer viruses

N Stuxnet

the intermediate ones a sub-field of the broad topic; and the
narrow ones a very specific topic. To explore how in-session
learning affects the model, we altered the order of present-
ing the results, which resulted in six permutations: Broad
followed by Intermediate followed by Narrow (or, BIN for
short), and likewise BNI, INB, IBN, NIB and NBI.

In order to cover all the six permutations, we created six
unique tasks for six different topics. We asked senior re-
searchers from these six computer science disciplines to de-
fine a task on their topic of expertise consisting of three
search queries to retrieve results of varying specificity for
a novice information-seeker in that domain. The experts
also analyzed Google Scholar results for each query to en-
sure that they complied with the subjective specificity. The
search topics and the queries are given in Table 1. For the
purpose of counterbalancing, we randomised the order of the
tasks and the query permutation for each participant.

4.3.1 Tasks
The tasks were defined in accordance with a task template

designed to situate the participants in a scientific essay writ-
ing scenario, which is most suitable for creating exploratory
search tasks [38]. To preserve consistency among the tasks,
all the task descriptions followed the same template. Note
that we refer to the results of one query as a list of articles:

“Imagine that you are writing a scientific essay about
topic X. We provide you with three lists of articles that
we have retrieved using three different queries. Go through
each list in the order we give you and tick articles that
you are interested in further reading to consider in your
essay. Follow your natural scientific literature review-



ing style when scanning the article lists. You have three
minutes to go through each list. We will inform you
when the three minutes are over and then you can move
on to the next list.”

4.3.2 Materials and User Interface
Google Scholar is the most commonly used literature search

tool by computer scientists [3]. We used Google Scholar to
retrieve 100 articles per query (from 10 SERPs), ranked ac-
cording to the relevance for that query. As each task con-
sisted of three queries, we retrieved 300 articles in total per
task (100 articles/query × 3 queries/task). According to
user observations (see Section 4.1), searchers decide to click
on a result based on the Google Scholar information snippet,
therefore we extracted all the primary information provided
with each result item in Google Scholar.

Prior work suggests that search queries affect the user per-
ception of search results [26], hence the query display could
prime the search behavior. However, users do not always see
the actual search query in systems that support exploratory
search through techniques such as query expansion. There-
fore, to avoid the influence of the search query on the search
behavior, we only displayed results of the query and not
the query itself. Participants could see the results retrieved
for one query at a time. Once they completed scanning and
ticking interesting articles from one list, then the list of next
100 articles for the next query was displayed. We provided a
tick-box on the left side of every article and the participants
could tick the articles that they were interested in. We in-
formed the participants that ticking an article is analogous
to clicking the URL and opening an article.

4.3.3 Measures and Procedure
We conducted the experiment on a desktop computer in a

controlled room. We first gave the participants the printed
task description. Next, we provided the first list of articles.
We logged all the articles that the participants ticked and
the time. While the participants were performing the tasks,
we logged their gaze distribution over the articles to corrob-
orate the number of articles seen before clicking an article.
We instructed the participants to think aloud while perform-
ing the tasks and we used a voice recorder to record their
thinking aloud. A pilot study showed it takes approximately
three minutes to examine one list of articles without getting
overly exhausted. Hence, the participants were given three
minutes to go through one list. We used a timer and in-
formed the participants when the three minutes had passed.

4.4 Results of Study 1
Every participant performed six search tasks and each

search task involved searching through three lists of articles,
therefore we obtained data from 432 search sessions (3 re-
sults lists × 6 search tasks × 24 participants). All together
there were 4,414 click actions. We used all data without
removing any outliers to keep the prediction task realistic.

4.4.1 Subjective Specificity
According to our model, the gradients of the Seen–Clicked

curves should decrease with the increase in the subjective
specificity (or narrowness of the results), and they should
follow a natural logarithmic distribution. In order to confirm
this, we analysed the overall distribution of the user informa-
tion gain over information seen for the three types of results.

Table 2: Logarithmic regression models and model fit (R2)
for number of articles Seen–Clicked. Breakdown per Broad,
Intermediate and Narrow search results.

Results Type Model Fit (R2)

Broad 3.83 ln(n) − 3.59 0.97

Intermediate 2.40 ln(n) − 2.06 0.97

Narrow 2.05 ln(n) − 1.96 0.97

Table 3: The Wilcoxon signed-ranked test on (left) the gra-
dients between the models and (right) the case-specific term,
α, for Broad (B), Intermediate (I), and Narrow (N) results.

Gradient λ Alpha α

Results Z p-val r Z p-val r

B & I −4.20 <.001 −.60 −3.77 <.001 −.54

B & N −4.29 <.001 −.62 −3.60 <.001 −.52

I & N −2.71 <.01 −.39 −.057 .954 −.01

Figure 2a shows the overall number of articles Seen–Clicked
averaged over all the participants over the three types of
search results. As our model predicts, the gradient of the
Seen–Clicked curve decreases as the results become narrower
for the user’s information need.

Next, we constructed gain curves for the three types of
results for each participant averaging over the six tasks they
performed. Using logarithmic regression, we calculated the
model including the gradient (λ) and the case-specific term
(α) of predicted curves for every participant (Section 3).
Table 2 provides the summary of the prediction models of
the three types of results and the model fit, R2, calculated
for the overall click data.

We used Wilcoxon signed-ranked test to statistically com-
pare the gradients of the predicted models of each type of
results. Gradients of the broad results (median 3.56) were
significantly greater than those of intermediate (3.08) and
narrow results (2.04). The gradients of the predicted mod-
els of the intermediate results were significantly greater than
that of narrow results.

To see whether, and how, subjective specificity affects
the case-specific term α, we conducted a Wilcoxon signed-
ranked test. For broad results, the values for α (median
2.41) were significantly greater than for either intermedi-
ate (1.16) or narrow results (1.69). However, the difference
was not significant between intermediate and narrow results,
suggesting that the case-specific term is not as sensitive to
subjective specificity as the gradient. Table 3 provides test
results for both λ and α.

To summarize, the results confirm that when the subjec-
tive specificity increases, the gradient of the Seen–Clicked
curve decreases. This suggests that the effective information
gain reduces with an increase in narrowness of the results,
which is validated by our model.

4.4.2 Order Effects
Since the participants went consecutively through the three

types of article lists, it is necessary to ensure that the or-
der of the articles lists has no effect on the information gain
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Figure 2: Seen–Clicked curves (2a) constructed by averaging over all the tasks performed by all the users with the broad,
intermediate, and narrow search results in Study 1. Note the difference between Seen–Clicked curves of broad and narrow
results is already visible within first 10 result items. Second and third images from the left, show Seen–Clicked curves for
Broad, Intermediate and Narrow results w.r.t. whether Broad results where considered before (2b) or after (2c) the Narrow
results. Note the difference in gradients for the Narrow results.

curves in Figure 2. To this end, we compared the number
(mean ± std .dev) of articles all the users clicked from the
first (6.1 ± 2.6), second (5.6 ± 1.9), and third (6.0 ± 2.1) re-
sult lists according to the order they were presented. The
results show that the order of results presentation has no
effect on the number of articles clicked. In order to validate
this statistically, we performed a Friedman test on the av-
erage number of articles participants clicked from the first,
second, and third article lists. It shows there are no signif-
icant differences between the number of articles clicked in
each list (p = .717).

4.4.3 Prior Experience
To understand the effect of prior experience on our model,

we compared the gradients of the models predicted for the
results with broad, intermediate, and narrow subjective speci-
ficity between participants with different levels of experi-
ence. The pre-study questionnaire confirms that PhD stu-
dents have more experience than MSc students in scientific
information-seeking and exploratory search (Section 4.2).
According to our model, we expect the prior experience of
the participants to affect the gradients of the Seen–Clicked
graphs. As expected, Figure 3 shows that the gradients of
the Seen–Clicked graphs for the participants with lower level
of experience (MSc students) is higher than that of the more
experienced participants (PhD students).

Table 4: Results of the Mann-Whitney’s U test for MSc
and PhD students comparing gradients of predicted models
of the broad, intermediate, and narrow results. The Seen–
Clicked curves for MSc students show significantly steeper
gradients for all three types of results.

Results U Z p-value r (effect size)

Broad 36 −1.99 < .05 −.41

Intermediate 33 −2.17 < .05 −.44

Narrow 26 −2.58 < .05 −.53

We used Mann-Whitney’s U test to compare the gradients
of the models predicted between the two groups. The results
are summarized in Table 4. The gradients of the predicted
models of broad results of MSc students (median 4.48) were

Table 5: Correlation analysis between the model gradi-
ents for Broad, Intermediate and Narrow results with re-
spect to user familiarity with scientific information-seeking
(left), and how often they explore unfamiliar research topics
(right). (N = 24)

Familiarity Frequency

Query rτ p-value rτ p-value

Broad −.35 < .05 −.46 < .01

Intermediate −.49 < .01 −.47 < .01

Narrow −.52 < .01 −.39 < .05

significantly steeper than that for the PhD students (2.94).
The gradients of the predicted models for results with inter-
mediate subjective specificity of MSc students (3.08) were
also significantly greater than that of PhD students (1.67).
Similarly, the gradients of the predicted models of the nar-
row results of the MSc students (2.46) were significantly
greater than that of the PhD students (1.49).

The results clearly show that the participants with lower
level of experience in scientific information-seeking (MSc
students) click more results indicating a lower subjective
specificity for all the three types of results than the more
experienced participants (PhD students). In order to un-
derstand this behavior we analyzed the correlation between
prior experience and gradients of the models, and think-
aloud recordings.

The correlation analysis suggests that the gradients for
Seen–Clicked curves are lower for the users with more experi-
ence in scientific information-seeking and exploratory search
(PhD students) (Table 5). According to the voice recordings,
PhD students had more specific criteria for the type of arti-
cles they needed. For example, 11 PhD students explained
that they were more interested in review articles than arti-
cles about a specific topic. They also distinguished scientific
articles from books to refrain from clicking too many books
and paid more attention to the publication year to avoid
older articles. However, MSc students clicked all the articles
that have relevant titles.
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Figure 3: Seen–Clicked graphs for the broad, intermediate and narrow results for MSc and PhD students. MSc students have
steeper gradients for all the three results compared to PhD students. Note the gradient of Seen–Clicked curve for narrow
results of MSc students is at the same level as the gradient of Seen–Clicked curve for intermediate results of PhD students.

4.4.4 In-Session Learning
To investigate whether in-session learning have an effect

on our model, we analyzed the Seen–Clicked graphs per per-
mutation condition (Section 4.3). These permutations emu-
late transitions in results-specificity during a search session.

For each query permutation, Seen–Clicked graphs of the
broad, intermediate and narrow results followed our model.
As expected, when narrow results were considered after the
broad ones, the gradients of Seen–Clicked graphs of the nar-
row results were greater than when narrow results were con-
sidered before broad results. A possible reason for this differ-
ence is an increase in user knowledge or in-session learning,
which can be seen in Figure 2b and 2c. Table 6 shows the
model prediction for these two scenarios. We can see that
the gradient of the predicted model of the narrow results has
increased from 1.9 to 2.3 when narrow is given after broad.

We conducted statistical test on the gradients of the mod-
els predicted for the three types of results given for the six
tasks for every participant (3 queries × 6 tasks = 18 mod-
els/participant). The Friedman test shows no significant
difference between the gradients for broad (p = .051) and
intermediate curves (p = .46) among the six query permuta-
tions. However, the difference is significant for the gradients
of the models predicted for narrow curves among the six
query permutations (χ2(5) = 19.4, p < .01). In order to en-
sure this difference for narrow results was due to whether
the broad results were before or after, we split the gradients
predicted for narrow curves in to two groups; narrow re-
sults were presented before broad results (respectively NIB,
NBI, INB) and vice-versa (BIN, BNI, IBN ). A Friedman
test showed no significant difference between the gradients
of the narrow results in permutations NIB, NBI, and INB
(p = .86). Similarly, the difference was not significant be-
tween BIN, BNI, and IBN permutations (p = .95).

These results suggest the gradients of the predicted mod-
els of narrow results change only if they are presented after
the broad results. An explanation for this difference is that
when results gradually become narrower, the user is likely
to make better use of the narrow results than in the oppo-
site direction. As a result of this behavior, when the narrow
results are presented after the broad results, the number of
articles clicked by the user increases and the effective in-
formation gain approaches that of the intermediate results.
Further, the number of articles that overlap between the
three lists is less than 4%. Therefore, we conclude that this
difference is not due to the article overlap between results
but rather a result of the learning effect.

Table 6: Logarithmic regression models and fit (R2) for
number of articles Seen–Clicked for broad, intermediate, and
narrow results with regard to whether the Broad results were
considered before (left) or after (right) the Narrow results.

Broad � Narrow Narrow � Broad

Results Model R2 Model R2

Broad 4.1 ln(n)−3.3 0.97 3.7 ln(n)−3.9 0.96

Intermediate 2.3 ln(n)−2.3 0.96 2.4 ln(n)−1.8 0.97

Narrow 2.3 ln(n)−1.5 0.98 1.9 ln(n)−2.5 0.95

Table 7: Cross-validation results for the broad, intermediate,
and narrow models built for MSc and PhD students.

Results MSc (R2) PhD (R2)

Broad 0.71 0.88

Intermediate 0.86 0.95

Narrow 0.86 0.60

4.4.5 Cross-validation
In order to further validate the model, we report results

obtained using leave-one-out cross-validation. Since the model
is affected by the prior experience of the users, we split the
data into two groups by experience (MSc and PhD). For each
group we construct separate models per subjective speci-
ficity level, by leaving one participant out and fitting the
model over the others. We then use this model to predict
the Seen–Clicked curves for the left-out participant, calcu-
lating the model fit (R2) with the actual Seen–Clicked curve
of that participant. We iterate over all participants, and re-
port the average R2 per group. We obtained reasonably high
R2 values for both groups for the three subjective specificity
levels as reported in Table 7.

4.4.6 Classification
Last, we perform a preliminary study evaluating the prac-

tical applicability of our model. To this end, we investigate
how well the subjective specificity can be predicted based
on the model gradient over the first 33 out of 100 articles.
That is, we check whether the system can infer the subjec-
tive specificity while the user is still going over the full list,
and can hence offer targeted assistance in doing so.



We use Weka [39] to train C4.5 decision trees [28] using
10-fold cross-validation. Despite our small training data,
we already obtain 72.1% accuracy and an AUC of 0.687
when classifying between broad and narrow results. This
means we beat the baseline, resp. 50% and 0.5 by a clear
margin. When considering three classes of results, we obtain
an accuracy of 48.1% and an AUC of 0.589 against a baseline
of 33%, and 0.5, again a clear improvement. It is interesting
to note that performance is stable between the first 33, 50,
or all 100 articles. Given the stark differences in slopes seen
(see, e.g., Fig. 3) it seems reasonable that with more training
data and more advanced classifiers reliable calls can be made
given only the first 10 or so articles.

4.5 Summary of Study 1 Findings
Overall, study 1 confirms that we can model information

gain in exploratory search with a logarithmic function of the
number of results seen by the user. It validates that the gra-
dient of the Seen–Clicked curves decrease with an increase of
the subjective specificity, hence we can estimate subjective
specificity using our model. Further, the results suggest that
our model is sensitive to both in-session learning and prior
experience of the user. When the user has more experience
with exploratory search and scientific information-seeking
the gradient of the Seen–Clicked curve decreases, because
she has a specific criteria for the type of information she
needs. If a user gradually moves from broad to narrow re-
sults, then in-session knowledge gain would help the user
to recognize more useful articles even from narrow results,
increasing the gradient of the Seen–Clicked curve. These re-
sults suggest that our model could be used to predict when
a user actually needs help with narrow results. Preliminary
classification indicates the applicability of our model in a
real IR system.

5. STUDY 2: FREE EXPLORATION
In order to validate our model in a more natural setting

we conducted a second study involving ten computer science
students exploring scientific articles for an actual informa-
tion need. Participants of this study were not involved in our
Study 1. Four were MSc students looking for scientific liter-
ature to include in their theses. The other participants have
just finished their MScs and were exploring new research
topics to prepare their PhD proposals. Google Scholar is
the search tool they all use, therefore we implemented an
interface similar to Google Scholar which enabled the par-
ticipants to issue search queries and view results that we
extracted from Google Scholar. We displayed 40 articles
per page with same information as in Google result snip-
pets and allowed every participant to conduct their natural
exploration using our search interface for two hours. We
did not impose any restrictions on the search process, and
they could conduct search in the same way as with Google
Scholar, i.e. click articles, read opened articles, and make
notes. We logged their search queries, retrieved results, and
clicked articles with time. We used experts in each search
topic to assign the search results of every query in to one
of the three categories: broad, intermediate, and narrow.
The experts were either postdoctoral researchers or profes-
sors specializing in the search topic. Most of the experts
(6/10) were supervisors of the participants and so had an
idea about the level of knowledge of the participants’ to
predict the subjective specificity. To measure the quality of
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Figure 4: Seen–Clicked curves constructed by averaging over
all the tasks performed by all the users with the broad, in-
termediate, and narrow search results in Study 2. Note that
in Study 2, a SERP contained 40 articles unlike 100 arti-
cles in Study 1 which makes the Seen–Clicked curves of two
studies slightly different.

categorization, part of the assessments were conducted by
two experts (6/10). We run Cohen Kappa test to measure
the inter-annotator agreement between the experts. Kappa
indicated a substantial agreement (Kappa = .67, p <.01).

5.1 Results of Study 2
In total all the participants have issued 142 search queries

where 36% of them has retrieved broad search results, 37%
has retrieved intermediate results, while 27% has retrieved
narrow search results. All together there were 339 clicks.

We plotted the Seen–Clicked curves for broad, intermedi-
ate, and narrow results by taking the average over all the
participants, as shown in Figure 4. As in Study 1, the gra-
dients of the Seen–Clicked curves decrease predictably with
increasing subjective specificity. We computed the model
for each curve using logarithmic regression. As expected,
the broad curve has the highest gradient (λ = 1.20) with
model fit R2 = 0.96, intermediate curve has the second high-
est gradient (λ = 0.73, R2 = 0.98), while the narrow curve
has the lowest gradient (λ = 0.50, R2 = 0.99). To further
confirm that the difference between the gradients of three
curves are statistically significant we computed the model
for individual Seen–Clicked curves for each participant and
conducted Wilcoxon signed-ranked test. The test results in-
dicate that predicted models of the Seen–Clicked curves of
broad search results have a significantly higher gradient than
that of both intermediate (Z = −2.31, p <.05) and narrow
(Z = −2.67, p <.01) search results. However, the differ-
ence between the gradients of the predicted models of the
intermediate and narrow search results was not significant
(Z = −1.836, p =.06). We could expect the difference be-
tween the Seen–Clicked curves of intermediate and narrow
search results to be small, because as the results of Study 1
indicate (see Section 4.4.4) users gain knowledge when they
gradually transit from broad to narrow search results. Fur-
ther, in Study 2 participants could browse through clicked
articles, therefore they spent time reading them in addi-
tion to scanning results, which explains why the gradients
of models in Study 2 are less than those in Study 1.

Overall, these results suggest that our model is applicable
to natural exploratory search tasks.



5.1.1 Change Over Time
We also analyzed the percentage of search queries that re-

trieved broad, intermediate, and narrow search results with
time to verify that search results become increasingly nar-
row over time. Most of the search queries (56%) that were
issued within the first 20 to 40 minutes have retrieved broad
results. Interestingly, some participants (10%) started their
search session with queries retrieving already narrow results.
After the first 1.5 hours, percentage of search queries that
retrieve narrow results has increased to 42%. This confirms
the common sense insight that during exploration over time
users gradually narrow down their search queries using spe-
cific terms [36]. Our model helps an IR system to infer
whether these broad or narrow search results correlate with
what the user is actually expecting.

5.2 Summary of Study 2 Findings
Overall, study 2 confirms that our model can be used to

predict subjective specificity in natural exploratory search
tasks. The analysis of broad, intermediate, and narrow
search results with time indicate that over time users issue
narrower search queries. However, exploratory search may
continue over several hours or even years and would involve
offline learning through other media such as books, and so-
cial networks [25]. Therefore, it is not feasible to use time
as a parameter to model subjective specificity. This study
further verifies that the number of search results users click
in exploratory search is affected by in-session learning. We
postpone the classification experiments here, as these re-
quire us knowing the actual user information need for each
query. Moreover, proper implementation requires a longitu-
dinal study to build a reference model per user such that we
can compare the Seen–Clicked curve against this reference
model. This is beyond the scope of this paper.

6. DISCUSSION AND CONCLUSIONS
This paper has contributed a model for predicting the

subjective specificity of search results. The model builds on
earlier insights about exploratory search and Information
Foraging Theory, assuming that for every individual there is
an idiosyncratic baseline curve for information gain. Given
this curve as a reference point, it predicts whether the cur-
rent search results are too broad or narrow for the user’s
information need. We empirically validated this model in
two studies which show that when search results become
too narrow—or, high in subjective specificity,—the gradient
of the Seen–Clicked graph decreases significantly.

We show that our model applies in both a controlled en-
vironment and in realistic open ended settings. Our classifi-
cation results show that our model indeed captures valuable
information about the subjective selectivity of results. Al-
though the exercise is preliminary, the results are promising:
ideally one would train over much more data, over more re-
sults, use a more advanced classifier, and, in particular, take
timings between clicks into account. However, these results
do tell us that our model could be employed within an IR
system to quickly obtain an educated guess on how nar-
row/broad the current search results are with regard to the
current state of the users’ information seeking process—and
adapt its behavior accordingly.

The model has valuable implications for exploratory search
systems. For example, it has potential applications in sys-
tems that support exploratory search by making query sug-

gestions [12], organizing information according to facets [40],
directing search by predicting keywords [14], or providing
visualizations and summaries of results [24]. These systems
could use our model to predict whether the suggested results
are broader or narrower than the information need of the
user. Furthermore, our model could be used as a substitute
for relevance feedback techniques that put the user through
tedious feedback loops. Even though a hierarchical ontol-
ogy such as Open Directory Project (ODP, www.dmoz.org)
could be used to suggest whether a search query is referring
to a broad/narrow topic, such an ontology cannot predict
whether the search results are actually broad/narrow with
respect to the current information need of the user. Our
model could also be applied to reinforcement learning based
solutions to predict the right balance between exploration
and exploitation according to the subjective specificity [14].
For example, we could increase the level of exploration for
novice researchers in a given field based on their current in-
formation need in order to expose them to a large area of the
information space. On the other hand, we would decrease
the level of exploration for more advanced researchers thus
exposing them to narrower search results. This model could
also be used by IR systems to real-time update search results
and visualizations according to subjective specificity [23].

An important open challenge is to incorporate our model
into a running IR system. Our preliminary classification
study shows a system without extra sensors and using only
a simple classifier can obtain informed estimates on the sub-
jective specificity while the user is interacting with its re-
sults. By leveraging larger training data and more sophisti-
cated classification/regression algorithms significant improve-
ments can be expected—in particular when user click/view
timings and history data are taken into account. In the
future, we will collect longitudinal data from users to con-
struct reference models and evaluate the predictive power
of the model. The cross-validation results suggest we could
build a common reference model for users with similar back-
grounds, and hence we may be able to build reference mod-
els for a set of known background levels and apply it to new
users without building individual reference models.

To conclude, our model is useful for the design of person-
alized exploratory search systems that adjust the search re-
sults according to the evolving information needs and knowl-
edge of the user in a given topic.
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