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Abstract. In exploratory data mining it is important to assess the significance
of results. Given that analysts have only limited time, it is important that we can
measure this with regard to what we already know. That is, we want to be able to
measure whether a result is interesting from a subjective point of view.
With this as our goal, we formalise how to probabilistically model real-valued
data by the Maximum Entropy principle, where we allow statistics on arbitrary
sets of cells as background knowledge. As statistics, we consider means and vari-
ances, as well as histograms. The resulting models allow us to assess the likeli-
hood of values, and can be used to verify the significance of (possibly overlap-
ping) structures discovered in the data. As we can feed those structures back in,
our model enables iterative identification of subjectively interesting structures.
To show the flexibility of our model, we propose a subjective informativeness
measure for tiles, i.e. rectangular sub-matrices, in real-valued data. The Infor-
mation Ratio quantifies how strongly the knowledge of a structure reduces our
uncertainty about the data with the amount of effort it would cost to consider it.
Empirical evaluation shows that iterative scoring effectively reduces redundancy
in ranking candidate tiles—showing the applicability of our model for a range of
data mining fields aimed at discovering structure in real-valued data.

1 Introduction

When analysing a database, what we already know will strongly determine which re-
sults we will find interesting. Rather than analysing results representing knowledge we
already have, we want to discover knowledge that is novel from our perspective. That
is, the interestingness of a data mining result is highly subjective. Hence, in order to
identify and mine such results we need theory and methods by which we can measure
interestingness, significance, or surprise, from a subjective point of view.

With this as our goal, we formalise how to probabilistically model real-valued data
using the Maximum Entropy principle [8], where we allow statistics over arbitrary sets
of cells—such as, but not limited to, rectangular tiles—as background information. Us-
ing our model, we can measure the likelihood of values and value configurations from
the perspective of what we already know about the data. As possible background knowl-
edge, we develop theory for two easily considered sets of statistics for characterising
distributions, namely means and variances, and histograms.



While being able to measure the significance of data mining results is important in
general, it is particularly so for the sub-fields of data mining that discover local struc-
tures, such as in (frequent) pattern mining, subspace clustering, subgroup discovery and
bi-clustering—each of which areas where we are typically faced with overly large and
highly redundant result sets. As our model allows us to incorporate information on any
area of the data, we are able to iteratively identify the most surprising pattern out of a
given collection of candidate patterns; as by subsequently updating our model with this
new information, all variations of the same theme will become predictable and hence
onward be considered uninformative.

To quantify the subjective informativeness of a local structure we propose an In-
formation Ratio measure for submatrices, or tiles, in real-valued data. It trades off how
strongly the knowledge of the structure reduces our uncertainty about the data, with the
amount of effort it would cost the analyst to consider it. For binary data, De Bie [5],
and Kontonasios and De Bie [10] successfully used an information ratio based measure
for identifying surprisingly dense tiles in binary data. Here, we generalise this notion to
more rich statistics on expected values of tiles in real-valued data.

The topic of measuring the significance of data mining results was first discussed
by Gionis et al. [6], who gave a method for testing significance by swap randomizing
binary data. Ojala et al. [15] extended swap randomization to real-valued data. With
swap randomization, however, only empirical p-values can be determined. Recently,
we gave theory for modelling real-valued data by the Maximum Entropy principle [11].
One key advantage, besides speed, of MaxEnt modelling over swap randomization is
that analytical modelling allows us to calculate exact probabilities.

Unlike the model we propose here, all of the above provide only relatively weak
and static null-hypotheses. That is, they can not incorporate information beyond row
and column margins, and hence can not identify redundancy in light of previous dis-
coveries. Our model, on the other hand, allows for much stronger statistical testing as
rich background knowledge can be incorporated, as well as for iterative use.

Empirical evaluation of our model shows that the information ratio measure reliably
identifies highly informative tiles, and that by iteratively including the highest ranked
tiles in our model, we correctly and non-redundantly identify the subjectively most
informative tiles, subgroups, and bi-clusters on both synthetic and real data.

In sum, the main contributions of this paper are as follows:

– We give the first Maximum Entropy model for real-valued data that can incorpo-
rate knowledge of certain useful statistics (mean/variance, and histograms) over
arbitrary areas of the data, and hence allows for iterative identification of the sub-
jectively most informative data mining result;

– We formalise Information Ratio scores for contrasting the subjective informative-
ness of tiles in real-valued data against their descriptive complexity;

Finally, it is important to stress the main goal of this paper is theoretical. It is explic-
itly not our goal to define practical algorithms for the efficient search of non-redundant
selection of tiles/subgroups/biclusters/subspace clusters/etc., all of which will likely
need specialised solutions. Instead, our aim here is to provide the theoretical founda-
tions that can be used as building blocks to those ends. As such, the information ratio we
here propose for tiles in real-valued data is a proof-of-concept, not a general solution.



2 Related Work

We discuss related work along the following lines: measuring significance, iterative data
mining, and identifying informative submatrices in real-valued data.

Assessing the significance of data mining results was first discussed by Gionis et
al. [6]. The general idea is to check how likely a result is in data that shares basic
properties, but is fully random otherwise. Swap-randomisation, essentially a Markov-
chain of many random, local, value-swaps, for generating random data that exactly
maintains the row and column margins of the original data. By sampling many random
datasets (10 000s), we can subsequently obtain empirical p-values for the result at hand.

Ojala et al. generalised this to maintaining means and variances over rows and
columns of real-valued data [15,14]. Recently, De Bie [5], and Kontonasios et al. [11]
gave theory to instead model real-valued data analytically by the Maximum Entropy
(MaxEnt) principle [8], maintaining properties by expectation instead of exactly. The
formalisation by De Bie only allowed to maintain row and column means [5], Kontona-
sios et al. [11] generalised towards means and variances as well as histograms over rows
and columns. Key advantages over swap-randomisation include the speed at which ran-
dom data can be sampled, and that exact probabilities and p-values can be calculated.

None of these can incorporate information on arbitrary submatrices as background
knowledge. As such, they are essentially static null hypotheses, and hence not applica-
ble for identifying which result is most significant in light of previous discoveries.

The general concept of iterative data mining was first proposed by Hanhijärvi et
al. [7]. A key advantage of the iterative approach is that it naturally eliminates redun-
dancy. Based on MaxEnt, to the end that we can make an informed decision which result
we should analyse next, Tatti and Vreeken [17] gave a general framework for measuring
the difference of results of arbitrary methods in terms of the information they provide
about the data at hand, and gave a proof-of-concept for binary data.

This paper broadly follows the lines of the framework for iterative data mining
based on Maximum Entropy modelling of prior beliefs [4]. While that work was mostly
abstract, we here bring these ideas closer to practice for a broad class of data and pat-
terns. The Information Ratio was introduced in De Bie [5] (there called Compression
Ratio) and Kontonasios and De Bie [10], respectively in the context of exact and noisy
tile patterns in binary databases. In the current paper it is extended to real-valued data.

Bi-clustering [13] and sub-space clustering [12] are also concerned with identifying
sub-matrices in real-valued data that exhibit structure different from the background.
As in pattern mining, these approaches typically result in overly large, and highly re-
dundant result sets [19]. Existing proposals to identify significant results either employ
simple null-hypotheses that do not allow for iterative updating, require strong assump-
tions on the distribution of the data, or cannot deal with overlapping tiles [12].

3 Preliminaries

3.1 Notation and Basic Concepts

As data we consider rectangular real-valued matrices D ∈ Rn×m. We denote the set of
row indices as I = {1, . . . , n} and the set of column indices as J = {1, . . . ,m}. A



matrix element can be referred to using an element e from the Cartesian product of I
and J , i.e.: e ∈ I × J . For e = (i, j), De denotes the matrix element on row i and
column j, sometimes also explicitly denoted as Dij . W.l.o.g. we assume the attributes
to be normalised between 0 and 1.

Since the patterns we will consider in this paper are local patterns, we need to estab-
lish a notation for referring to such subsets. A subset of database entries can be indexed
using an index set, here defined as a subset of the Cartesian product of I and J , i.e.:
E ⊆ I × J . We will use DE to refer to the (multi-)set of matrix values indexed by E .

Special cases of index sets that will turn out to be of particular importance in this
paper are index sets referring to: the elements within one particular row i (i.e. E =
{(i, j) | j ∈ J }); the elements within one particular column j (i.e. E = {(i, j) | i ∈
I}); and the elements within a tile τ , which is defined as the set of elements in the
intersection between a set of rows Iτ ⊆ I and a set of columns Jτ ⊆ J .

Central in this paper is the notion of a pattern p, which we define as a triple p =
(E , s, ŝ). Here, E is an index set; s is a vector-valued function defined over sets of real-
valued elements, called a statistic; and ŝ is the value the data miner beliefs to hold over
the part of the data matrix indexed by E . In general, this will be the empirical value, i.e.:
ŝ = s(DE), yet our theory below allows ŝ to take any valid value for s.

We will focus on two statistics in particular. We define these by specifying the com-
ponents of this vector-valued function.

– The first statistic we will consider has two components s(1) and s(2): resp. the
function computing the sum of the set of values it is evaluated on, and the function
computing the sum of their squares: s(1)(DE) =

∑
(i,j)∈E Dij , and s(2)(DE) =∑

(i,j)∈E D
2
ij . These two values (along with the cardinality of DE ) are sufficient to

compute the mean and the variance of DE , so patterns defined in these terms inform
a user also on the mean and the standard deviation of a set of database elements.

– The second statistic has dE components s(k)E , specifying a dE -dimensional his-
togram for the elements indexed by E . More specifically, given a set of dE + 1
real values b0,E < b1,E < . . . < bdE ,E ∈ R specifying the boundary values of the
histogram bins used for the set E (typically with b0,E = −∞ and bdE ,E = ∞),
we write kE for the bin index for any x ∈ R, i.e. kE(x) = max{k|x < bk,E}.
Then the k’th statistic s(k)E (DE) in this set is equal to the number of elements from
DE that fall between bk,E and bk−1,E , i.e. s(k)E (DE) =

∑
(i,j)∈E I(kE(Dij) = k),

with I the indicator function. A further piece of notation that will prove useful is
wE(k) = bk,E − bk−1,E , denoting the width of the k’th bin.

Given our broad definition of a pattern, we can assume that also background knowl-
edge can be specified in terms of patterns, as formalised above, the data miner expects
to be present in the data. The set of all triples specifying such background knowledge
will be denoted as B. We will show below how we will use such background knowledge
to obtain a probability distribution P for the data, representing the data miner’s back-
ground knowledge on D. Note that the analogy between patterns and the background
knowledge will prove useful in an iterative data mining setting: it allows us to naturally
incorporate previously shown patterns into the background knowledge.

All logarithms are base 2, and by convention, 0 log 0 = 0.



3.2 The Maximum Entropy Principle, a brief primer

In our approach we make use of maximum entropy models, a class of probabilistic
models that are identified by the Maximum Entropy principle [8]. This principle states
that the best probabilistic model is the model that makes optimal use of the provided in-
formation, and that is fully random otherwise. This makes these models very suited for
identifying informative patterns: when measuring quality, we know our measurement is
based on our background information only, not on undue bias of the distribution.

Entropy maximisation problems are particularly well-suited to deal with background
information on expected values of certain properties of the data. For example, the data
miner may have an expectation about the value f̂ of a certain function f when evaluated
on the data. We embed this information in the background distribution by requiring that
the expected value of f evaluated on D is equal to f̂ :∫

P (D)f(D) dD = f̂

Thus, inference of background model P is done by solving the following problem:

P ∗ = maxP −
∫
P (D) log (P (D)) dD , (1)

s.t.
∫
P (D)f(D) dD = f̂ , ∀f , (2)∫
P (D) dD = 1 . (3)

where each function f computes a statistic of which the data miner expects the value to
be f̂ . It is clear that in the current context, these functions are determined by the triples
(E , s, ŝ) in the background knowledge. More specifically, for each pattern (E , s, ŝ) there
would be a corresponding set of functions f defined as f(D) = s(k)(DE), and f̂ =
ŝ(k), and this for each component s(k) of s.

Entropy maximisation subject to such constraints is a convex problem, which can
often be solved efficiently. Furthermore, the resulting distributions are known to be-
long to the exponential family of distributions, the properties of which are very well
understood [18]. In particular, the maximum entropy distribution is of the form:

P (D) =
1

Z
exp

{∑
i

λff(D)

}
,

where Z is a normalisation factor known as the partition function and λf is a Lagrange
multiplier corresponding to the constraint involving f , the value of which can be found
by solving the dual optimisation problem.

4 Maximum Entropy Modeling

In this section we discuss the details of the maximum entropy modelling of the statistics
discussed in Sec. 3. More in particular, we discuss how the constraint functions f in



Eq. (2) are to be instantiated, and we will provide the resulting probability distribution
as the solution to the MaxEnt optimisation problem.

Here, we focus on how to obtain the MaxEnt distribution; in the next section, we
will show how to use this model for identifying subjectively interesting tiles.

4.1 Encoding Means and Variances as Prior Knowledge

As we argued in Sec. 3, the information on the empirical mean and variance of a set
of values is equivalent with information on their sum and sum of squares, computed
by the functions s(1) and s(2) respectively. Thus, to consider background knowledge
on the empirical mean and variance for a set of elements E , we need the following two
functions as constraint functions in Eq. (2):

f
(1)
E (D) , s(1)(DE) =

∑
(i,j)∈E

Dij , f
(2)
E (D) , s(2)(DE) =

∑
(i,j)∈E

D2
ij .

We will denote the corresponding Lagrange multipliers as λ(1)E and λ(2)E respectively.
Since we need these functions for each E for which background knowledge is available,
the total number of constraints of the type of Eq. (2) is equal to twice the number
of index sets E for which the sum of the elements and the sum of the squares of the
elements are part of the background knowledge.

Shape of the solution. By solving the MaxEnt optimization problem using Lagrange
Multiplier theory we obtain the following probability distribution:

P (D) =
∏
i,j

√
βij
π
· exp

{
−

(Dij + 1
2 ·

αij

βij
)2

1
βij

}
, (4)

where the variables αij and βij can be expressed as follows in terms of the Lagrange
multipliers for the individual constraints:

αij =
∑

E:(i,j)∈E

λ
(1)
E , βij =

∑
E:(i,j)∈E

λ
(2)
E .

Thus the resulting probability distribution is a product of n×m independent Normal
distributions, with means equal to µij = − αij

2βij
and variance σ2

ij = 1
2βij

. Each factor in
the product of Eq. (4) corresponds to the probability distribution for one value Dij in
the database. Sampling a full database from P hence comes down to n×m independent
univariate sampling operations. Also, note that the distribution of Dij depends only on
the Lagrange multipliers of the subsets E in which the cell participates, i.e. for which
(i, j) ∈ E , which makes the sampling easier to conduct.

4.2 Encoding Histograms as Prior Knowledge

In order to encode background knowledge on the histogram within an index set E , we
need dE constraint functions (as explained in Sec. 3, we assume that the histogram for



subset E contains dE bins, defined by the bin boundaries b0,E , b1,E , . . . , bdE ,E ∈ R,
i.e. we allow number and values of the bin boundaries to be different for different E).
These functions are defined as: f (k)E (D) , s

(k)
E (DE) =

∑
(i,j)∈E I(kE(Dij) = k)

where kE(Dij) denotes the bin index for the value Dij (see Sec. 3). The functions f (k)E
calculate the number of elements from DE that fall in the k’th bin of the histogram. We
will denote the corresponding Lagrange multiplier as λ(k)E .

Shape of the solution. Using basic Lagrange multiplier theory one can show that the
resulting probability distribution decomposes to a product of n×m independent prob-
ability distributions, i.e. P (D) =

∏
i,j Pij(Dij). Each component Pij has the form

Pij(Dij) =
1

Zij
· exp

 ∑
E:(i,j)∈E

dE∑
k=1

λ
(k)
E I (kE(Dij) = k)

 ,

where Zij is the decomposed partition function, formally defined as

Zij =

∫ 1

0

exp

 ∑
E:(i,j)∈E

dE∑
k=1

λ
(k)
E I (kE(Dij) = k)

 dDij .

Each component refers to one data cell and it is affected only by the Lagrange Multi-
pliers assigned to the sets E in which the entry participates.

4.3 Inferring the Model

The values of the λ parameters, which uniquely determine the MaxEnt model, are in-
ferred by solving the Lagrange duals of the respective MaxEnt optimisation problems.
These dual optimisation problems are convex, such that they can be solved efficiently
using simple and well-known optimisation methods such as Conjugate Gradient (CG,
the method of our choice in this paper) providing the gradient can be computed effi-
ciently. Due to lack of space details cannot be shown here, but the theoretical complexity
of each CG step is O(#λ2) (with #λ the number of Lagrange multipliers), dominated
by the cost of computing the gradient vector. In practice, however, we observe that run
time develops linearly with the number of λs.

5 Measuring Subjective Interestingness

In this section we discuss how to use a MaxEnt model for measuring the subjective
interestingness of a pattern. From 5.4 onward we focus on the specific case of tiles, a
well-known and intuitive pattern type that lends itself for description in simple terms.

5.1 Quantifying Subjective Interestingness

The main goal of this section is defining a measure for the subjective interestingness of
a pattern from the user’s point of view. That is, how strongly a pattern contrasts to what
the user already knows or beliefs about the data.



Loosely speaking, for a given pattern p, we have to define two important proper-
ties; the first we refer to as the Information Content of a pattern, or, the amount of
information the pattern can convey to the user. The second property we refer to as the
Description Length of a pattern, or, the cost for transmitting this information.

We can assume that a user, given his limited capacity for information processing,
will find patterns with larger Information Content for a constant Description Length
more interesting. In other words, the interestingness of a pattern can be formalised as
a trade-off between these two quantities. This motivates the Information Ratio as a
suitable measure of a pattern’s interestingness.

Definition. The Information Ratio of a pattern p is the ratio of its Information Content
and Description Length:

InfRatio(p) =
InfContent(p)

DescrLength(p)
,

The Information Ratio was originally introduced in the context of exact tiles in
binary data [5]. There it was shown that iteratively mining the tile with the highest
InfRatio amounts to searching for a set of tiles with maximal total self-information
given a limited budget on the overall description length. This was abstracted in [4] by
relating iterative data mining in general to the budgeted set coverage problem, further
justifying the use of this measure in iterative data mining.

5.2 Information Content of a Pattern

Our goal here is to quantify the information a user can extract from a pattern. We define
the InfContent for a pattern p as the number of bits we gain when using p in addition
to our current background knowledge when describing D. More formally,

InfContent(p) = L(D | B)− L(D | B ∪ {p}) ,

where L(D | B) is the number of bits required to describe D using only B, and L(D |
B ∪ {p}) is the number of bits to describe D using both B and p.

We have, for the number of bits to encode D given background knowledge B,

L(D | B) =
∑

(i,j)∈I×J

L(Dij | B) ,

where we transmit, in a fixed order, the value of each cell Dij ∈ D. To encode a specific
value, we use optimal prefix codes [3]. We obtain the probabilities from our maximum
entropy model P built using the information in B. We hence have

L(Dij | B) = − logPij(Dij) ,

Intuitively, the better our model predicts the value of cell, i.e. the more expected a value
is, the fewer bits are needed to encode it.



5.3 Estimating InfContent

With the above, we can measure the subjective interestingness of a pattern p, and so
identify the most informative pattern from a large collection. To do so, however, the
above formalisation requires us to infer the maximum entropy model for B∪p, and this
for each candidate pattern p. This is clearly bound to be computationally prohibitive
for large collections of candidate patterns. We therefore take a different approach, and
instead estimate the gain of adding a pattern p = (E , s, ŝ) to our model by focusing on
the information gained regarding the database entries in E . That is,

InfContent(p) = L(DE | B)− L(DE | p) ,

which is the difference between the number of bits we need under the current model
to describe the values of DE corresponding to the pattern, and the number of bits we
would need to encode this area by solely using the information the pattern p provides.
This approximation will be good as long as the pattern contains significantly more in-
formation about the database entries E concerned than the background information—a
reasonable assumption given our focus on identifying the most informative patterns.

As discussed in Sec. 5.2, the first term L(DE | B) can be computed directly. For
calculating L(DE | p) we consider two approaches, corresponding to the statistics dis-
cussed in Sec. 3.1. Each results in a different way of calculating the overall InfContent :

– Considering the first statistic, a pattern specifies the mean µ and variance σ2 of the
values in DE . We know [3] that in this case the maximum entropy model for DE
reduces to the normal distributionN (µ, σ2). Hence, with φµ,σ2 the normal density
function, we have (with the subscript m to denote mean and variance):

Lm(DE | p) =
∑

(i,j)∈E

− log φµ,σ2(Dij) ,

by which we encode the values in DE by an optimal prefix code proportional to the
probability of the entry under this normal distribution.

– Patterns defined in terms of the second type of statistic specify a histogram for the
values in E . The maximum entropy model subject to this information reduces to a

piecewise-constant density function, uniform with value ŝ
(k)
E
|E| ×

1
w(k) within the k’th

bin of the histogram, where ŝ
(k)
E
|E| represents the fraction of values from DE specified

to belong to the k’th bin. (This follows from the fact that the MaxEnt distribution
with a bounded domain is uniform [3].) Hence, we have (with the subscript h to
denote histogram):

Lh(DE | p) =
∑

(i,j)∈E

Lh(Dij | p) ,

where

Lh(Dij | p) = − log

(
ŝ
(kE(Dij))
E
|E|

)
− log

(
1

w(kE(Dij))

)
,

in which, per entry Dij , the first term represents the description length for the bin
index the entry falls in, and the second term for the actual value within that bin.



5.4 Description Length of a Pattern

So far our discussion has been fully general with respect to the choice of E . From now
on our exposition will be focused on patterns defined by a tile. Recall that a tile, denoted
as τ , is defined as a sub-matrix of the original data matrix. The reason for focusing on
tiles is that a tile τ can be described conveniently and compactly by specifying their
defining row set Iτ and column set Jτ .

Thus, for the Description Length of a tile pattern p = (E , s, ŝ) where E = {(i, j) |
i ∈ Iτ , j ∈ Jτ}, we have DescrLength(p) = L(E) + L(s, ŝ) = L(Iτ ) + L(Jτ ) +
L(s, ŝ), where L(Iτ ) + L(Jτ ) is the number of bits we need to identify the position of
the tile. L(Iτ ) can be computed as:

L(Iτ ) = log(n) + log

(
n

|Iτ |

)
where the first term accounts for the transmission of the height |Iτ | of tile τ . With
this information, we can now identify which rows of D are part of the tile using an
index over a binomial. We calculate L(Jτ ) analogously. Note that as we know the
exact counts, encoding through an index over a binomial is at least as efficient as using
individual prefix codes [3] as it makes optimal use of the available knowledge.

The quantity L(s, ŝ) scores the cost for transmitting the remaining information con-
veyed by the pattern. It is straightforward that the way InfContent is calculated dictates
a certain approach for the DescrLength as well. Let us discuss these here in turn.

– For mean and variance of a tile as background knowledge we have

Lm(s, ŝ) = 2 log(10acc)

where we encode mean(Dτ ) and var(Dτ ) using a uniform prior.
– In the case of histograms as background information, we have

Lh(s, ŝ) = LN(dE) + log

(
10acc

dE − 1

)
+ log

(
|E|+dE − 1

dE − 1

)
where we first encode the number of bins dE in the histogram, using the MDL
optimal code LN for integers ≥ 1 [16]. This encoding requires progressively more
bits the higher the value—by which we explicitly reward simple histograms. In the
next term, log

(
10acc

dE−1
)
, we encode the split points between the bins. These terms

account for specifying the histogram, i.e. the statistic s used.
The last term, log

(|E|+dE−1
dE−1

)
, encodes ŝ: how many observations fall within each

bin. We have to partition |E| entries over dE possibly empty bins. This is known as
a weak composition. The number of weak compositions of k non-negative terms
summing up to n is given by

(
n+k−1
k−1

)
. Assuming an ordered enumeration, we need

log
(|E|+dE−1

dE−1
)

bits to identify our composition. Note that log
(
n
k

)
= log Γ(n+1)−

log Γ(k + 1)− log Γ(n− k + 1) and hence is calculable even for large n and k.

Each of these methods require an accuracy level acc to be specified. Ultimately to
be decided by the user, a natural choice is the number of significant digits of the data [9].



5.5 Instantiating InfRatio

The discrimination between transmitting mean/variance and histograms allows us to
instantiate the InfRatio of a tile τ in two different ways per scheme.

InfRatios(p) =
L(DE | B)− Ls(DE | p)

L(E) + Ls(s, ŝ)

where s is the statistic used as prior knowledge in the modelling of the database.

6 Iteratively Identifying Subjectively Interesting Structure

In Section 4 we discussed how to obtain a Maximum Entropy model for a real-valued
database under background information of statistics s over arbitrary sets of cells E of the
data, and Section 5 proposed InfRatio as a measure for the informativeness of patterns
in the data based on their unexpectedness under this background knowledge.

In practice, to discover novel knowledge, we propose to iteratively find the most in-
formative pattern with regard to background knowledge; then present this pattern to the
user, and continue our search after incorporating the pattern in the background knowl-
edge and updating the MaxEnt model accordingly.

What background knowledge to start the search from is up to the user; it may be
empty, or can consist of already known patterns. In our experiments, we choose to
compute the initial Maximum Entropy model with statistics on the row and column
distributions as prior knowledge. We then use InfRatio to rank a collection of candi-
date patterns F , and identify the top-ranked pattern as most interesting. This pattern is
henceforth considered prior knowledge. From this point the algorithm iterates with

1. a Maximum Entropy modelling step, using all accumulated background knowledge
2. an InfRatio ranking for the tiles in F in each iteration.

We terminate when user dependent criteria are met. These criteria can be objective (e.g.
top-k, log-likelihood of the data, or a model selection criterion such as MDL, BIC or
AIC), subjective (e.g. human evaluation of patterns) or a combination of both.

7 Experiments

In this section we empirically evaluate our MaxEnt model for real-valued data. We
stress, however, that the contribution of this paper is theoretical in nature—this section
should be regarded as proof-of-concept, not a final application. Though our modelling
theory is general for E , for the practical reasons of defining meaningful InfRatio, as
well as for mining candidate patterns F we here restrict ourselves to tiles.

7.1 Setup

We evaluate whether iterative ranking helps to correctly identify the most informative
tiles on data with known ground truth. Second, for synthetic and real data, we investigate
the InfRatio and log-likelihood curves of the top-k identified patterns.



We implemented our model in C++, and make our code available for research pur-
poses.3 All experiments were performed on a 2.66GHz Windows 7 machine.

As initial background knowledge to our model, we always include statistics over
the row and column distributions.

Data In order to evaluate performance with a known ground truth, we use synthetic
data. We generate a 500-by-500 dataset, in which we plant four complexes of five
overlapping tiles, for which the values are distributed significantly different from the
background. We refer to this dataset as Synthetic.

Per complex, we plant three tiles of 15-by-15, one of 10-by-10, and one of 8-by-8.
Values of cells not associated with a complex are drawn from a Normal distribution
with mean µ = 0.3 and variance σ = 0.15. For cells associated with complex A we use
µ = 0.15 and σ = 0.05; for complex B we use µ = 0.2 and σ = 0.05; for complex C,
µ = 0.3 and σ = 0.05; and for complex D, µ = 0.4 and σ = 0.05.

For the set of candidate tiles to be ranked, in addition to the 20 true tiles, we ran-
domly generate 230 tiles of 15-by-15. Per random tile we uniformly randomly select
columns and rows. Note that by generating these at random, they may or may not
overlap with the complexes, and hence may or may not identify a local distribution
significantly different from the background.

We also evaluate on real data. The Alon dataset is a 62-by-2000 gene expression
dataset [1]. To obtain tiles for this data, using CORTANA4 at default settings, we mined
the top-1000 subgroups of up to 3 attributes. Subgroups naturally translate into tiles;
simply consider the features of the rule as columns, and the transactions satisfying
the rule as rows. The Arabidopsis thaliana, or Thalia, is a 734-by-69 gene expression
dataset.5 For this data we mined 1 600 biclusters using BIVISU at default settings [2].

7.2 Ranking tiles

In our first experiment we evaluate iteratively identifying subjectively informative pat-
terns. In particular, we use InfRatio to rank the 250 candidate tiles of the Synthetic
dataset, starting with background knowledge B containing only statistics on the row
and column distributions. At every iteration, we incorporate the top-ranked tile into the
model, and re-rank the candidates.

We evaluate modelling with means-variances, and with histograms information. For
both, we report both the ranking of the first five iterations, and the final top-10 iterative
ranking. We depict the id of the top-ranked tile in an iteration in bold. We give the
results in Table 1. On the left, we give the InfRatio rankings for transmitting means-
variances, i.e. using Lm, while on the right we give the rankings for when transmitting
histograms information, i.e. using Lh.

Table 1 shows that InfRatio consistently ranks the largest and least-overlapping
tiles at the top. In the first iteration the top-10 tiles include the largest tiles from each

3 http://www.tijldebie.net/software
4 CORTANA: http://datamining.liacs.nl/cortana.html
5 http://www.tik.ee.ethz.ch/˜sop/bimax/



Table 1. Iterative Ranking. The top-10 ranked tiles for the first five iterations, plus the final
ranking of the top-10 most informative tiles, from 250 candidate tiles. We give the results for
the Synthetic dataset both for mean-variance modelling and transmission using Lm (left), resp.
for histogram modelling with transmission using Lh (right). Tiles prefixed with a letter denote
planted tiles, those denoted with a plain number are random.

Mean-Variances Histograms

Rank It 1 It 2 It 3 It 4 It 5 Final It 1 It 2 It 3 It 4 It 5 Final

1. A2 B3 A3 B2 C3 A2 A1 C2 B1 C1 D1 A1
2. A4 B4 B2 C3 C4 B3 C2 B1 B2 D1 D3 C2
3. A3 B2 C3 C4 C2 A3 B1 C1 B3 D3 B2 B1
4. B3 A3 C4 C2 D2 B2 C1 C3 C1 B2 D2 C1
5. B4 C3 C2 B4 D4 C3 C3 B2 D1 D2 A2 D1
6. B2 C4 B4 D2 D3 C2 B2 B3 D3 A2 84 B2
7. C3 C2 D2 D4 D1 D2 B3 D1 D2 C3 25 A2
8. C4 D2 D4 D3 A5 D3 A3 D3 A2 25 228 D2
9. C2 D4 D3 D1 21 A5 A2 D2 C3 84 43 228

10. D2 D3 B1 A5 B5 B5 D1 A2 25 228 33 43

of the four complexes. The final ranking shows that for each complex large and little-
overlapping tiles are selected. Note that due to the random value generation some tiles
within a complex may stand out more from the rest of the data than others.

In general, modelling with histograms is more powerful than the means-variances
case. Clearly, this does rely on the quality of the used histograms. Here, we use his-
tograms that balance complexity with the amount of data by the MDL principle [9]. As
we here mainly consider small tiles, the obtained histograms are likely to underfit the
underlying Normal distribution of the data. Nevertheless, Table 1 shows that the largest
tiles of each complex are again top-ranked. As an artifact of the above effect, the final
ranking does include a few randomly generated tiles—for which we find that by chance
their values indeed differ strongly from the background distribution, and hence identify
potentially interesting areas.

From this experiment we conclude that our InfRatio for real-valued tiles coupled
with iterative modelling leads to the correct identification of subjectively interesting
patterns, while strongly reducing redundancy.

7.3 InfRatio and log-likelihood curves

Next, we examine InfRatio and the iteratively obtained rankings on both artificial and
real-world data. Evaluating the interestingness of patterns found in real-world data is
highly subjective, however. The negative log-likelihood of the data is often considered
as a measure of the surprise of the data as a whole. Finding and encoding informative
patterns will provide more insight in the data, and so decrease surprise; the negative
log-likelihood scores. Since we have a probabilistic model computing these scores is
straightforward. In our experiments we expect to see significant decreases of the score
after the discovery of a surprising pattern.
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Fig. 1. InfRatio values for the top-10 ranked tiles (left column) and negative log-likelihood of
the data (right) for the Synthetic (top row), Alon (middle row), and Thalia (bottom row) datasets.
The solid blue line corresponds to histograms, the dashed black line to means variance modelling.
Note the downward trend for both plot types: the most informative tiles are ranked first.

Figure 1 presents the InfRatio and negative log-likelihood scores for the first 10
iterations of our algorithm for resp. the Synthetic, Alon, and Thalia datasets.

We observe the InfRatio values are non-increasing over the whole range of the
ten iterations, for all datasets and coding schemes. An immediate explanation is that in
successive iterations more (correct) information is encoded into the model, and hence
patterns become at most as surprising as they were in previous iterations. We further
observe decreasing negative log-likelihood curves over the ten iterations. The fact that
the data gets less surprising in every iteration is an indication that the patterns discov-
ered and encoded in the model are significant. Loosely speaking, we can also say that
the more the decrease per iteration the more interesting the corresponding pattern is.

We see that for Synth means-variance modelling obtains the best scores (note the
very low negative log-likelihood scores). This follows as the data was generated by
Normal distributions. For our real datasets, on the other hand, histogram modelling is
in its element as these datasets are less well explained by Gaussians.

The modelling time for these datasets, for the first ten iterations range between sec-
onds (Synthetic), tens of seconds (Thalia, and Histograms on Alon), up to hundreds of
seconds for Alon when modelling means/variances. Scalability experiments (not shown
due to lack of space) show run time scales linearly with the number of added tiles.



8 Discussion

The experiments verify that by iteratively identifying the most surprising tile, and updat-
ing our model accordingly, we identify the top-k informative tiles without redundancy.

Our model is generally applicable for measuring the significance of results under
background knowledge that can be cast in the form of statistics over sets of entries, yet
it is currently particularly suited for iteratively measuring the significance of tiles.

We note that our analytical model allows a lot of freedom for constructing measures
of surprise, interestingness, or expected performance for tiles. In previous work [11],
we formalised how to calculate the expected Weighted Relative Accuracy (WRAcc)
of a pattern, such as used in subgroup discovery. More research on how to calculate
expected performance on other popular measures is needed.

In this paper, we are not concerned with mining interesting tiles directly; That is,
we here assume the candidate tiles are discovered externally, and we ‘simply’ order
them; by which it is currently particularly applicable for identifying the informative and
non-redundant results in pattern mining, bi-clustering, and sub-space clustering of real-
valued data. The development of efficient algorithms for mining surprising tiles will
make for exciting future work—likely with specific solutions per setting, as different
goals are to be optimised.

Moreover, our modelling theory will allow a generalisation of the recent proposal
by Tatti and Vreeken [17] on measuring differences between data mining results to
real-valued data—given meaningful translation of results into patterns p = (E , s, ŝ).

Perhaps most interesting from our perspective is to extend our modelling theory
further towards richer types of structure. A straightforward step would be to incorporate
into the model not just a statistic over the whole tile, but instead do so per row and/or
column. Beyond means-variances, and histograms, there are other important notions of
structure such as similarities between rows, as well as correlations between attributes—
each of which will further extend the applicability towards the above applications.

In this light it is important to note that our models, and in particular the histogram
variant, are already directly applicable for evaluating significances and measuring sub-
jective interestingness on ordinal and integer valued data.

9 Conclusion

We formalised how to probabilistically model a real-valued dataset by the Maximum
Entropy principle, such that we can iteratively feed in background information on the
distributions of arbitrary subsets of elements in the database. To show the flexibility of
our model, we proposed the InfRatio measure to quantify the subjective interestingness
of tiles, trading off how strongly the knowledge of the pattern reduces our uncertainty
about the data with how much effort would it costs the analyst to consider it.

Empirical evaluation showed that by iteratively scoring candidate tiles, and subse-
quently updating the model with the most informative tile, we can effectively reduce
redundancy in the set of candidate tiles—showing the applicability of our model for a
range of data mining fields dealing with real-valued data.
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