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Abstract. When analysing binary data, the ease at which one can in-
terpret results is very important. Many existing methods, however, dis-
cover either models that are difficult to read, or return so many results
interpretation becomes impossible. Here, we study a fully automated ap-
proach for mining easily interpretable models for binary data. We model
data hierarchically with noisy tiles—rectangles with significantly differ-
ent density than their parent tile. To identify good trees, we employ the
Minimum Description Length principle.
We propose Stijl, a greedy any-time algorithm for mining good tile
trees from binary data. Iteratively, it finds the locally optimal addi-
tion to the current tree, allowing overlap with tiles of the same par-
ent. A major result of this paper is that we find the optimal tile in only
Θ(NM min(N,M)) time. Stijl can either be employed as a top-k miner,
or by MDL we can identify the tree that describes the data best.
Experiments show we find succinct models that accurately summarise
the data, and, by their hierarchical property are easily interpretable.

1 Introduction

When exploratively analysing a large binary dataset, being able to easily inter-
pret the results is of utmost importance. Many data analysis methods, however,
have trouble meeting this requirement. With frequent pattern mining, for exam-
ple, we typically find overly many and highly redundant results, hindering inter-
pretation [10]. Pattern set mining [2, 5, 21] tackles these problems, and instead
provides small and high-quality sets of patterns. However, as these methods gen-
erally exploit complex statistical dependencies between patterns, the resulting
models are often difficult to fully comprehend.

When analysing 0–1 data, the encompassing question is ‘how are the 1s dis-
tributed?’. In this paper, we focus on the underlying questions of ‘where are the
ones?’ and ‘where are the zeroes?’. To answer these questions in an easily in-
terpretable manner, we propose to model the data hierarchically, by identifying
trees of tiles, i.e. sub-matrices that are surprisingly dense or sparse compared
to their parent tile. As an example, consider Figure 1, in which we show a toy
example of a hierarchical tiling, and the corresponding tile tree. As the figure
shows, tiles model parts of the data, and subtiles provide refinements over their
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Fig. 1. Toy example of a tiled database, and the corresponding tile tree structure

parents. Next, as an example on real data, consider Figure 2, in which we show
the tiling our algorithm discovered on paleontological data. Very easily read, us-
ing only 14 tiles, the tiling shows which regions of the data are relatively dense
(dark), as well as where relatively few 1s are found (light).

Clearly, we aim to mine descriptions that are succinct, non-redundant, and
neither overly complex nor simplistic. We therefore formalise the problem in
terms of the Minimum Description Length (MDL) principle [9], by which we can
automatically identify the model that best describes the data, without having
to set any parameters. For mining good models, we introduce Stijl, a heuristic
any-time algorithm that iteratively greedily finds the optimal subtile and adds
it to the current tiling. A major result of this paper is that we show that we can
find such optimal subtiles in only Θ(NM min(N,M)), as opposed to Θ(N2M2)
when done naively [8].

We are not the first to study the problem of hierarchical tiling. The problem
was first introduced by Gionis et al. [8], whom proposed a randomised approach
as an alternative to the naive approach. Our FindTile procedure, on the other
hand, is deterministic and identifies optimal subtiles. Moreover, our MDL for-
malisation requires no scaling parameters, making the method parameter-free.

These differences aside, both methods assume an order on the rows and
columns of the data; as for such data, a subtile can be straightforwardly defined
by a ‘from’ and ‘to’ selection query. As such, we exploit that the data is ordered,
as this allows us to generate more easily understandable and easily visually
representable models for the data. Although many datasets naturally exhibit

Fig. 2. Tiling of the Paleo dataset. See Fig. 4(b) for a cleaned version without 1s



such order, e.g. spatially and/or temporally, not all data does. For unordered
data, e.g. through spectral ordering, good orders can be discovered [6, 8, 19].

Experimentation on our method shows we discover easily interpretable mod-
els that describe the data very well. Stijl mines trees that summarise the data
succinctly, with non-redundant tile trees that consist of relatively few tiles.

The paper is organised as follows. Section 2 discusses preliminaries. Section 3
gives the Stijl algorithm for mining tile trees, and Section 4 details mining opti-
mal subtiles. We discuss related work in Section 5, and experiment in Section 6.
We round up with discussion and conclusions. Due to lack of space, we give the
proofs for Propositions 1–2 in Appendix A.

2 Encoding Data with Tile Trees

We begin by giving the basic definitions we use throughout the paper, after
which we discuss how we can measure the quality of a hierarchical tile set.

Notation A binary dataset D is a binary matrix of size N -by-M consisting
of N rows, binary vectors of size M . We denote (i, j)th entry of D by D(i, j).
We assume that both rows and columns have an order and, for simplicity, we
assume that the indexing corresponds to the orders.

A geometric tile X = (a, b) × (c, d), where 1 ≤ a ≤ b ≤ N and 1 ≤ c ≤
d ≤ M , identifies a consecutive submatrix of D. In contrast, for combinatorial
tiles, the rows and columns are not required to be consecutive. In this paper,
we focus on geometric tiles. We say that X1 = (a1, b1) × (c1, d1) is a subtile
of X2 = (a2, b2) × (c2, d2) if X1 is completely covered by X2, that is, a2 ≤ a1,
b1 ≤ b2, c2 ≤ c1, and d1 ≤ d2. We will write (i, j) ∈ X if a ≤ i ≤ b and c ≤ j ≤ d.

A tile tree T is a tree of tiles such that each child of a tile X ∈ T is a subtile
of X. We will denote the children of X by children(X). In our setting, the order
of the children matters, so we assume that children(X) is a list of tiles and not
a set. We also assume that the root tile always covers the whole data. Given a
tile tree T , a tile X ∈ T and a subtile Y of X, we will write T + X → Y to
denote a tile tree obtained by adding Y as a last child of X.

Our next step is to define which data entries are covered by which tile. Since
we allow child tiles to overlap, the definition is involved—although intuition is
simple: the first most-specific tile that can encode a cell, encodes its value, and
all other tiles ignore it. More formally, given a tile tree T , consider a post-order,
that is, an order where the child tiles appear before their parents and such that
if children(X) = (Y1, . . . , YL), then Yi is appears before Yi+1. Let X ∈ T . We
define tid(X; T ) to be the position of X in the post-order. When T is clear from
the context we will simply write tid(X). An example of the post-order is given
in Figure 1(b). Using this order we can define which entries belong to which tile.
We define

area(X; T ) = {(i, j) ∈ X | there is no Y with (i, j) ∈ Y, tid(Y ) < tid(X)} ,



that is, entries are assigned to the cells first-come first-serve, see Figure 1(a) as
an example. Among these entries, we define the number of 1s and 0s as

p(X; T , D) = |{(i, j) ∈ area(X; T ) | D(i, j) = 1}| and

n(X; T , D) = |{(i, j) ∈ area(X; T ) | D(i, j) = 0}| .

Let us denote by |T | the number of tiles in a tree T , i.e. |T | = |{X ∈ T }|, and
denote by T0 the most simple tile tree consisting of only a root tile.

MDL for Tile Trees Our main goal is to find tile trees that summarise
the data well; they should be succinct yet highly informative on where the 1s on
the data are. We can formalise this intuition through the Minimum Description
Length (MDL) principle [9], a practical version of Kolmogorov Complexity [13].
Both embrace the slogan Induction by Compression. The MDL principle can be
roughly described as follows: Given a dataset D and a set of models X for D,
the best model X ∈ X is the one that minimises L(X) + L(D | X) in which
L(X) is the length, in bits, of the description of the model X, and L(D | X) is
the length, in bits, of the data as described using X.

This is called two-part MDL, or crude MDL. This stands opposed to refined
MDL, where model and data are encoded together [9]. We use two-part MDL
because we are specifically interested in the model: the tile tree T ∗ that yields
the minimal description length. Further, although refined MDL has stronger
theoretical foundations, it cannot be computed except for some special cases [9].
Before we can use MDL to identify good models, we will have to define how to
encode a database given a tile tree, as well as how to encode a tile tree.

We encode the values of area(X; T ) using prefix codes. The length of an
optimal prefix code is given by Shannon entropy, i.e. − logP (·), where P (·) is
the probability of a value [4]. We have the optimal encoded length for all entries
area(X; T ) of a tile X in a tile tree T as

L(D | X, T ) = L(p(X; T , D) ,n(X; T , D)) ,

where L(p, n) = −p log p
p+n − n log n

p+n is the scaled entropy.
In order to compare fairly between models, MDL requires the encoding to be

lossless. Hence, besides the data, we also have to encode the tile tree itself.
We encode tile trees node per node, in reverse order, and add extra bits

between the tiles to indicate the tree structure. We use a bit of value 1 to
indicate that the next tile is a child of the current tile, and 0 to indicate that
we have processed all child tiles of the current tile. For example, the tree given
in Figure 1(b) is encoded, with <tile i> indicating an encoded tile, as

<tile 6>1<tile 5>1<tile 4>001<tile 3>1<tile 2>01<tile 1>000 .

To encode an individual tile, we proceed as follows. Let X be a non-root
tile and let Z = (a, b) × (c, d) be the direct parent tile of X. As we know that
X is a subtile of Z, we know the end points for defining the area of X fall
within those of Z. As such, to encode the 4 end points of X we need only
4 log(b− a+ 1) + 4 log(d− c+ 1) bits.



We also know that number of 1s in X are bounded by the area of Z, (b −
a + 1)(d − c + 1), and hence we can encode the number of 1s in X in log(b −
a+ 1) + log(d− c+ 1) bits. Note that although we can encode the number of 1s
more efficiently by using the geometry of X instead of Z, this would introduce
a bias to small tiles.

Next, to calculate the encoded size of a tile, we need to take the two bits for
encoding the tree structure of X into account. As describe above, one bit is used
to indicate that X has no more children and the other to indicate that X is a
child of Z. Putting this together, the encoded length of a non-root tile X is

L(X | T ) = 1 + 1 + 5 log(b− a+ 1) + 5 log(d− c+ 1) .

Let us now assume that X is the root tile. Since we require that a root tile covers
the whole data, we need to encode the dimensions of the data set, the number of
1s in X, and following 1 bit to indicate that all tiles have been processed. Unlike
for the other tiles in the tree, we have no upper bound for the dimensions of
X, and therefore would have to use a so-called Universal Code [9] to encode the
dimensions—after which we could subsequently encode the number of 1s in X
in logN + logM bits. However, as the lengths of these codes are constant over
all models for D, and we can safely ignore them when selecting between models.
For simplicity, for a root tile X we therefore define L(X | T ) = 0.

As such, we have for the total encoded size of a database D and a tile tree T

L(D, T ) =
∑
X∈T

L(X | T ) + L(D | X, T ) ,

by which we now have a formal MDL score for tile trees.

3 Mining Good Tile Trees

Now that we have defined how to encode data with a tile tree, our next step is
to find the best tile tree, i.e. the tile tree minimising the total encoded length.
That is, we want to solve the following problem.

Problem 1 (Minimal Tile Tree). Given a binary dataset D, find a tile tree T
such that the total encoded size, L(D, T ), is minimised.

As simply as it is stated, this minimisation problem is rather difficult to solve.
Besides that the search space of all possible tile trees is rather vast, the total
encoded size L(D, T ) does not exhibit trivial structure that we can exploit for
fast search, e.g. (weak) monotonicity. Hence, we resort to heuristics.

For finding an approximate solution to the Minimal Tile Tree problem, we
propose the Stijl algorithm.1 We give the pseudo-code as Algorithm 1. We
iteratively find that subtile Y of a tile X ∈ T by which the total encoded size is
minimised. We therefore refer to Y as the optimal subtile of X. After identifying

1 named after the art movement De Stijl, to which art our models show resemblance.



Algorithm 1: Stijl(D, T , X)

input : dataset D, current tile tree T , parent tile X
output : updated tile tree T

1 Y ← subtile of X minimising L(D, T +X → Y );
2 while L(D, T +X → Y ) < L(D, T ) do
3 T ← Stijl(D, T +X → Y, Y );
4 Y ← subtile of X minimising L(D, T +X → Y );

5 return T ;

the optimal subtile, Stijl adds Y into the tile tree, and continues inductively
until no improvement can be made.

Alternative to this approach, we can also approximate the optimal k-tile tree.
To do so, we adapt the algorithm to find the subtile Y over all parent tiles X ∈ T
that minimises the score—as opposed to our standard depth-first strategy. Note
that by the observation above, for the k at which the score is minimised, both
strategies find the same tree.

By employing a greedy heuristic, we have reduced the problem of finding the
optimal tile tree into a problem of finding the optimal subtile.

Problem 2 (Minimal Subtile). Given a binary dataset D, a tile tree T , and a tile
X ∈ T , find a tile Y such that Y is a subtile of X, and T +X → Y is minimised.

The main part of this paper details how to find an optimal subtile, a proce-
dure we subsequently use in Stijl.

4 Finding the Optimal Tile

In this section we focus on finding the optimal subtile. Naively, we solve this by
simply testing every possible subtile, requiring Θ(N2M2) tests, where N and M
are the number of rows and columns in the parent tile, respectively [8].

In this section, we present an algorithm that can find the optimal subtile in
Θ(N2M). In order to do that, we will break the problem into two subproblems.
The first problem is that for two fixed integers c ≤ d, we need to find two integers
a ≤ b such that the tile (a, b) × (c, d) is optimal. Once we have solved this, we
can proceed to find the optimal tile by finding the optimal (c, d).

We begin by giving an easier formulation of the function we want to optimise.
In order to do so, note that adding a subtile Y to X changes only area(T ;X ),
and does not influence (the encoded length of) other tiles in the tree. Hence,
we expect to be able to express the difference in total encoded length between
T +X → Y and T in simple terms. In fact, we have the following theorem.

Proposition 1. Let T be a tile tree. Let X ∈ T be a tile and let Y be a subtile of
X. Define T ′ = T +X → Y and have u = p(Y ; T ′), v = n(Y ; T ′), o = p(X; T ),
and z = n(X; T ). Then

L(D, T ′)− L(D, T ) = L(u, v) + L(o− u, z − v)− L(o, z) + L(Y | T ′) .



In order to find the optimal subtile it is enough to create an algorithm for
finding an optimal subtile more dense than its parent tile. To see this, note that
we can find the optimal tile by first finding the optimal dense tile, and then find
the optimal sparse tile by applying the same algorithm on the 0–1 inverse of the
data. Once we have both the optimal optimal dense and optimal sparse tiles, we
can choose the overall optimal subtile by MDL.

Let X = (s, e)× (x, y) be a tile, and T a tile tree with X ∈ T . Assume that
we are given indices c and d. Our goal in this section is to find those indices a
and b such that Y = (a, b)× (c, d) is an optimal subtile of X.

Define two vectors, p for positives and n for negatives, each of length e −
s + 1, that contain the number of 1s and 0s respectively, within the ith row of
X, pi = |{(i+ s− 1, w) ∈ area(X) | c ≤ w ≤ d,D(i+ s− 1, w) = 1}|, and ni =
|{(i+ s− 1, w) ∈ area(X) | c ≤ w ≤ d,D(i+ s− 1, w) = 0}|.

This allows us to define cnt(a, b; p) =
∑b

i=a pi (and similarly for n). Let
u = cnt(a, b; p) and v = cnt(a, b;n). It follows that p(Y ; T +X → Y ) = u and
n(Y ; T +X → Y ) = v, where Y = (a, b)× (c, d); those are the entries of X now
to be encoded by Y . Let us define cost(a, b; p, n, o, z) = L(u, v)+L(o− u, z − v).
We will write cost(a, b), when p, n, o, z are known from the context. Proposition 1
states that minimising L(D, T ′) is equivalent to minimising cost(a, b).

Further, let us define fr(a, b; p, n) = cnt(a, b; p) /(cnt(a, b; p) + cnt(a, b;n)) to
be the frequency of 1s within Y . Proposition 1 then allows us to formulate the
optimisation problem as follows.

Problem 3 (Minimal Border Points). Let p and n be two integer vectors of the
same length, m. Let o and z be two integers such that cnt(1,m; p) ≤ o and
cnt(1,m;n) ≤ z. Find 1 ≤ a ≤ b ≤ n such that fr(a, b; p, n) > o/(o+ z) and that
cost(a, b) is minimised.

The rest of the section is devoted to solving this optimisation problem.
Naively we could test every pair (a, b), which however requires quadratic time.
Our approach is to ignore a large portion of suboptimal pairs, such that our
search becomes linear.

To this end, let p and n be two vectors, and let 1 ≤ b ≤ |p| be an integer.
We say that a ≤ b is a head border of b if there are no integers i and j such
that 1 ≤ i < a ≤ j ≤ b and fr(i, a− 1) ≥ fr(a, b). Similarly, we say that b ≥ a
is a tail border of a if there are no indices a ≤ i ≤ b < j ≤ |p| such that
fr(i, b) ≤ fr(b+ 1, j). We denote the list of all head borders by bh(b, p, n) and
the list of all tail borders by bt(a, p, n).

Given a head border a of b, we say that a is a head candidate if there are
no indices 1 ≤ i < a ≤ j ≤ b such that fr(i, a− 1) ≥ fr(j, b). Similarly, we say
that b ∈ bt(a) is a tail candidate of a if there are no indices a ≤ i ≤ b < j ≤ |p|
such that fr(a, i) ≤ fr(b+ 1, j). We denote the list of all head candidates by
ch(b, p, n) and the list of all tail candidates by ct(a, p, n).

To avoid clutter, we do not write p and n wherever clear from context.
As an example, consider Figure 3(a). Since fr(a2, a3 − 1) > fr(a3, a4 − 1),

it follows that a3 /∈ bh(a4 − 1). Note that a4 ∈ bh(a6 − 1) but a4 /∈ ch(a6 − 1)
since fr(a2, a4 − 1) > fr(a5, a6 − 1).



a1 a2 a3 a4 a5 a6

fr
eq

u
en

cy

(a)

c d

b

a′

i

a

(b)

Fig. 3. Example of how FindTile considers head candidates. (a) a3 is no head border
for a4−1, as fr(a2, a3 − 1) > fr(a3, a4 − 1). Although a head border for a6−1, a4 is not
a head candidate for a6 − 1, as fr(a3, a4 − 1) > fr(a5, a6 − 1). (b) Proposition 2 states
that we can ignore i as head candidate for a tile to j, as by fr(u′, i− 1) > fr(i, u− 1)
we know fr(u′, j − 1) > fr(i, j − 1).

We are now ready to state the main result of this section: in order to find
the optimal tile we need to only study head and tail candidates.

Proposition 2. Let p and n be two vectors and let o and z be two integers. Let
i ≤ j be two indices such that fr(i, j) > o/(o + z). Then there are a ≤ b such
that cost(a, b) ≤ cost(i, j), a ∈ ch(b) and b ∈ ct(a).

Proposition 2 is illustrated in Figure 3(b). Since fr(a, i− 1) ≥ fr(i, a′), we
know that i /∈ ch(b). Proposition 2 implies that we can safely ignore (i, b) and
consider instead (a′, b) or (a, b).

Proposition 2 states that we need to only study candidates, a subset of bor-
ders. Fortunately, there exists an efficient algorithm to construct a border list
bh(b+ 1) given the existing list bh(b) [3]. The approach relies on several lemmata.

Let (a1, . . . , aK) = bh(b). We claim that bh(b+ 1) ⊆ (a1, . . . , aK , b+ 1).

Lemma 1. If a ≤ b and a /∈ bh(b), then a /∈ bh(b+ 1).

Proof. By definition there are i and j such that 1 ≤ i < a ≤ j ≤ b such that
fr(i, a− 1) ≥ fr(a, j). These indices are valid for b+ 1, hence a /∈ bh(b+ 1). ut

Hence, in order to construct bh(b+ 1), we only need to delete entries from
(a1, . . . , aK , b+ 1). Let us define a head frequency hfr(b) = maxi≤b fr(i, b) and a
tail frequency tfr(a) = maxa≥i fr(a, i). The following two lemmata say that the
last entry in bh(b+ 1) has to be the smallest index j such that fr(j, b) = hfr(b),
and that the borders of b+ 1 smaller than j are all included in bh(b).

Lemma 2. Let j be the smallest index s.t. fr(j, b) = hfr(b). Then j = max bh(b).
Let j be the largest index s.t. fr(a, j) = tfr(a). Then j = min bt(a).

Proof. First note that j ∈ bh(b). Let i be an index j < i ≤ b. We have fr(i, b) ≤
fr(j, b) which implies that fr(j, i− 1) ≥ fr(i, b). This implies that i /∈ bh(b). The
case for bt(a) is similar. ut



Algorithm 2: Scan(p, n, o, z)

input : integer vectors p and n, number of 1s (0s) in the parent tile, o (z)
output : an interval t solving Problem 3

1 best ←∞; t← (0, 0); B ← C ← ∅;
2 foreach b = 1, . . . , |p| do
3 push b to the front of B;
4 push b to the front of C;
5 while |B| > 1 and fr(B1, b; p, n) ≤ fr(B2, B1 − 1; p, n) do
6 if B1 = C1 then remove C1;
7 remove B1;

8 while |C| > 1 and fr(C2, C1 − 1; p, n) ≥ tfr(b+ 1) do
9 c← cost(C1, b);

10 if c < best then t← (C1, b); best ← c;
11 remove C1;

12 c← cost(C1, b);
13 if c < best then t← (C1, b); best ← c;

14 return t;

Lemma 3. Let a ∈ bh(b). Let k be the smallest index such that fr(k, b+ 1) =
hfr(b+ 1). If a < k, then a ∈ bh(b+ 1).

Proof. Assume that a /∈ bh(b+ 1), that is, there are i and j such that 1 ≤ i < a ≤
j ≤ b + 1 such that fr(i, a− 1) ≥ fr(a, j). We must have j = b + 1. Otherwise
a /∈ bh(b). Note that fr(a, b+ 1) < fr(k, b+ 1), which implies fr(a, k − 1) <
fr(a, b+ 1). Since k − 1 ≤ b, we have a /∈ bh(b), which is a contradiction. ut

These lemmata give us a simple approach. Start from (a1, . . . , aK , b+ 1) and
delete entries until you find index k such that fr(k, b+ 1) is maximal. We will
see later in Proposition 3 that we can easily check the maximality.

Unfortunately, as demonstrated in [3] there can be Θ(b2/3) entries in bh(b).
Hence, checking every pair will not quite yield a linear algorithm. In order to
achieve linearity, we use two additional bounds. Consider Figure 3(a). We have
bh(a5 − 1) = (a1, a2, a4). First, since tfr(a5) = fr(a5, a6 − 1) > fr(a1, a2 − 1),
we have a5 − 1 /∈ ct(a1). Consequently, we do not need to check the pair
(a1, a5−1). Secondly, we know that for any k ≥ a5 we have fr(a5, k) ≤ tfr(a5) ≤
fr(a3, a4 − 1). Hence, a4 /∈ ch(k) and we can ignore a4 after we have checked
(a4, a5− 1). We can now put these ideas together in a single algorithm, given as
Algorithm 2, and which we will refer to as the Scan algorithm.

Proposition 2 stated that it is enough to consider intervals where then end
points are each other candidates. The next proposition shows that Scan actually
tests all such pairs. Consequently, we are guaranteed to find the optimal solution.

Proposition 3. Let p and n be count vectors and let o and z be two integers.
Scan(p, n, o, z) tests every pair (a, b) where a ∈ ch(b) and b ∈ ct(a).

To show this, we first need the following lemma.



Lemma 4. Let (a1, . . . , aL) = bh(b). Then fr(ak−1, ak − 1) < fr(ak, ak+1 − 1).

Proof. Assume that fr(ak−1, ak − 1) ≥ fr(ak, ak+1 − 1). Then ak /∈ bh(b). ut

By which we can proceed with the proof for Proposition 3.

Proof. Let us first prove that B at bth step is equal to bh(b). We prove this using
induction. The case b = 1 is trivial and assume that the result hold for b − 1.
Let (a1, . . . , aL) = bh(b− 1). Lemma 1 implies that bh(b) ⊆ (a1, . . . , aL, b).

Assume that fr(b, b) > fr(aL, i− 1) = hfr(b− 1). By definition, b ∈ bh(b).
Lemma 2 implies that b is the smallest index k for which fr(k, b) = hfr(b).
Lemma 3 now states that bh(b) = (a1, . . . , aL, b) which is exactly what we get
since the while loop on Line 5 is not executed.

Assume that fr(b, b) ≤ fr(aL, i− 1). Then b /∈ bh(b) and indeed it is deleted
in the first run of the while loop (Line 5). Let ak ∈ bh(b) be the first entry in B
after the while loop has finished. Let al ∈ bh(b) be the smallest index for which
fr(al, b) = hfr(b). We claim that k = l. If l > k, then fr(al, b) ≤ fr(al−1, al − 1)
which implies that fr(al, b) ≤ fr(al−1, b) which is a contradiction. Assume that
l < k. By definition of k, we have fr(ak−1, ak − 1) < fr(ak, b). Lemma 4 implies
that fr(al, ak − 1) ≤ fr(ak−1, ak − 1). Hence, fr(al, b) < fr(ak, b), which is a con-
tradiction. Consequently, k = l. Lemma 3 now states that bh(b) = (a1, . . . , ak)
which is exactly what we have.

Now that we have proved that B at bth step is equal to bh(b). Let us consider
the list C. Let a ∈ B \ C. This means that a was deleted during some previ-
ous round, say k < i, and that there is j such that fr(j, a− 1) ≥ tfr(k + 1) ≥
fr(k + 1, b). Hence a is not a head candidate of b. Consequently, all head candi-
dates of b are included in C at bth step.

Not all entries of C are tested during the bth step. Assume that we have
completed bth step and Ck is not tested (k > 1). Since C is a subset of the border
list, Lemma 4 implies that fr(Ck, Ck−1 − 1) ≤ fr(C2, C1 − 1) < tfr(b+ 1). There
is j such that tfr(b+ 1) = fr(b+ 1, j). This implies that b is not a tail candidate
for Ck, which completes the proof. ut

Let us finish this section by demonstrating the linear execution time Θ(|p|)
of Scan. To this end, note that we have three while-loops in the algorithm:
two inner and one outer. During each iteration of the first inner loop we delete
an entry from B, a unique number between 1 and |p|. Consequently, the total
number of times we execute the first inner loop is |p|, at maximum. Similarly,
for the second inner loop. The outer loop is executed |p| times. Next, note that
there are two non-trivial subroutines in the algorithm. First, on Lines 6 and
9, we need to compute frequencies. This can be done in constant time by, e.g.
precomputing cj =

∑j
i=1 pi, and then using the identity cnt(i, j; p) = cj − ci−1.

Secondly, on Line 9, we need to compute tfr(b). We can precompute this in linear
time by using the algorithm given in [3], which involves computing tail borders
(equivalent to computing B in Scan) and applying Lemma 2. This shows that
the total execution time for the algorithm is Θ(|p|).



Algorithm 3: FindTile(X, T , D)

input : parent tile X = (s, e)× (x, y), current tile tree T , dataset D
output : B, a tile optimizing T +X → B, see Problem 2

1 o← p(X; T ); z ← n(X; T ); B ← X;
2 foreach c and d such that x ≤ c ≤ d ≤ y do
3 update p and n;
4 (a, b)← Scan(p, n, o, z);
5 Y ← (a+ s− 1, b+ s− 1)× (c, d);
6 if L(T +X → Y,D) < L(T +X → B,D) then B ← Y ;
7 (a, b)← Scan(n, p, z, o);
8 Y ← (a+ s− 1, b+ s− 1)× (c, d);
9 if L(T +X → Y,D) < L(T +X → B,D) then B ← Y ;

10 return B;

Now that we have a linear algorithm for discovering an optimal tile given a
fixed set of columns, we need an algorithm for discovering the columns them-
selves. We employ a simple quadratic enumeration given in Algorithm 3. Note
that Scan assumes that the optimal tile is more dense than the background tile,
we have to call Scan twice, once normally to find the optimal dense subtile, and
once with ones and zeroes reversed to find the optimal sparse subtile.

The computational complexity of FindTile is Θ(N2M) where N is the
number of columns and M is the number of rows in the parent tile. How-
ever, if M is smaller than N , we can transpose the parent tile and obtain a
Θ(NM min(N,M)) execution time.

5 Related Work

Frequent itemset mining [1] is perhaps the most well-known example of pattern
mining. Here, however, we are not just interested in the itemsets, but also ex-
plicitly want to know which rows they cover. Moreover, we are not interested in
finding all tiles, but aim to find tilings that describe the data well.

Mining sets of patterns that describe a dataset is an actively studied topic [2,
20,21]. Related in that it employs MDL, is the Krimp algorithm [21], which pro-
posed the use of MDL to identify pattern sets. Geerts et al. discuss mining large
tiles of only 1s [7]. Different from these approaches, our models are hierarchical,
and do allow for noise within tiles.

Kontonasios and De Bie discuss ranking a candidate collection of tiles, em-
ploying a maximum entropy model of the data to measure the interestingness of
a tile [5, 12]. Boolean matrix factorisation [15] can be regarded as a tile mining.
The goal is to find a set of Boolean factors such that the Boolean product thereof
(essentially tiles of only 1s) approximates the dataset with little error. Similarly,
bi-clustering can be regarded as a form of tiling, as it partitions the rows and
columns of a dataset into rectangles [18]. Compared to these approaches, a ma-



jor difference is that we focus on easily inspectable hierarchical models, allowing
nested refinements within tiles.

Most closely related to Stijl is the approach by Gionis et al. [8], who pro-
posed mining hierarchies of tiles, and gave a randomised heuristic for finding
good subtiles. We improve over this approach by formally defining the problem
in terms of MDL, employing a richer modelling language in the sense that it al-
lows tiles with the same parent to overlap, introducing a deterministic iterative
any-time algorithm, that given a tile tree efficiently finds the optimal subtile.
Since the approach by Gionis et al. [8] does not use MDL as a stopping criterion,
it is not possible to compare both methods directly. In principle, it is possible
to adopt their search strategy to our score. A fair comparison between the two
search strategies, however, is not trivial since the randomised search depends on
a parameter, namely the number of restarts. This parameter acts as a trade-off
between the expected performance and execution time. Choosing this parameter
is difficult since there are no known bounds for the expected performance.

Our approach for discovering optimal subtiles is greatly inspired by the work
of Calders et al. [3] in which the goal was to compute the head frequency, hfr(i),
given a stream of binary vectors.

As Stijl is an iterative any-time algorithm, and hence iterative data mining
approaches are related. The key idea of these approaches is to iteratively find the
result providing the most novel information about the data with respect to what
we already know [5, 11, 14]. Here, we focus on hierarchical tiles, and efficiently
find the locally optimal addition.

6 Experiments

In this section we empirically evaluate our approach. We implemented our al-
gorithms in C++, and provide the source code, along with the synthetic data
generator.2 All experiments were executed single-threaded on Linux machines
with Intel Xeon X5650 processors (2.66GHz) and 12 GB of memory.

We use the shorthand notation L% to denote the compressed size of D
with the tile tree T as discovered by Stijl relative to the most simple tree

T0, L(D,T )
L(D,T0)%, wherever D and T are clear from context.

We do not compare to the naive strategy of finding optimal subtiles as
Θ(N2M2) execution time is impractical even for very small datasets.

Datasets We evaluate our measure on one synthetic, and four publicly avail-
able real world datasets. The 240-by-240 synthetic dataset Composition was
generated to the likeness of the famous Mondrian painting ‘Composition II in
Red, Blue, and Yellow’, where we use different frequencies of 1s for each of the
colours. Abstracts contains the abstracts of papers accepted at ICDM up to 2007,
for which we take the words with a frequency of at least 0.02 after stemming
and removing stop words [5]. The DNA amplification data contains DNA copy
number amplifications. Such copies are known to activate oncogenes and are

2 http://adrem.ua.ac.be/stijl/

http://adrem.ua.ac.be/stijl/


Table 1. Results of Stijl on five datasets. Shown are, per dataset, number of rows
and columns, overall density, and for resp. without and with overlap, the relative com-
pression L% (lower is better), number of discovered tiles, and wall-clock runtime.

Disjoint Overlap

Dataset N M %1s L% |T | time L% |T | time

Composition 240 240 23.2 81.72 8 57s 81.58 7 1m23s

Abstracts 859 541 6.6 89.59 14 16m03s 89.54 14 27m54s
DNA Amp. 4 590 391 1.5 61.91 466 334m 61.61 446 625m
Mammals 2 183 121 20.5 54.69 55 1m37s 54.62 50 3m06s
Paleo 501 139 5.1 80.23 14 39s 79.07 13 1m22s

the hallmarks of nearly all advanced tumours [17]. The Mammals presence data
consists of presence records of European mammals3 within geographical areas
of 50× 50 kilometers [16]. Finally, Paleo contains information on fossil records4

found at specific palaeontological sites in Europe [6].

We give the basic properties of these datasets in Table 1. To obtain good
orders for the real world datasets, we applied SVD, that is, we ordered items
and transactions based on first left and right eigenvectors.

Synthetic Data As a sanity check, we first investigate whether Stijl can
reconstruct the model for the Composition data. We ran experiments for both
the disjoint and the overlapping tile settings. With the latter setup we perfectly
capture the underlying model in only 7 tiles. We show the data and discovered
model as Figure 4(a); each of the rectangles in the painting are represented
correctly by a tile, including the crossing vertical and horizontal bars. When we
require disjoint tiles, the fit of the model is equally good, however the model
requires one additional tile to model the crossing bars.

Quantitative Analysis Next, we consider quantitative results on the real
datasets. We run Stijl both for disjoint and overlapping tiles. Table 1 gives the
relative compressed size L%, the number of tiles in the returned tile trees, and
the wall-clock time it took to find these models.

These results show Stijl finds trees that summarise the data well. The rel-
ative compressed sizes tell the data is described succinctly, while the tile trees
remain small enough to be considered by hand; even for DNA, by the hierarchical
nature of the model, the user can quickly read and understand the model.

For Mammals we see that whereas the baseline model T0 requires 193 315
bits, the Stijl model with overlapping tiles only requires 105 589 bits. Note
that, as the total compressed size essentially is the log-likelihood of the model
and the data, a gain of a single bit corresponds to a twice as likely model.

In all experiments, allowing overlap results in better models. Not only do
they give more succinct data descriptions, the discovered tile trees are also sim-

3 Available for research purposes: http://www.european-mammals.org
4 NOW public release 030717 available from [6].

http://www.european-mammals.org


(a) Composition

(b) Paleo (transposed)

Fig. 4. Results of Stijl on (a) Composition and (b) Paleo, with (top) the disjoint
hierarchical tiling, and (bottom) the tiling allowing overlap within the same parent tile.
For Paleo we do not show individual 1s. Darker tiles correspond to higher frequency

pler, requiring fewer tiles to do capture the structure of the data. By allowing
overlap, the search space is expanded, and hence more computation is required:
on average, in our experiments, twice as much.

On these datasets, the current Stijl implementation requires from seconds
up to a few hours of runtime. By its iterative any-time nature, users, however,
can already start to explore models while in the background further refinements
are calculated.

Qualitative Analysis Next, we investigate the discovered models in more
detail. To this end, we first use the Paleo data as by its modest size it is easily
visually representable. In Figure 4(b) we show the result of Stijl on this data,
with the top figure the result of allowing only disjoint tiles, and in the bottom
figure when allowing overlap. Darker toned tiles correspond to more dense areas
of the data. For clarity, we here do not show the individual 1s (as we did in
Fig. 2, which corresponds to the bottom plot of Fig. 4(b)).

The first thing we note, is that the two results are quite alike. The model with
overlap, however, is a bit simpler and ‘cleaner’: the relatively dense areas are of
the data are easier to spot for this model, than for the disjoint one. Second, it
uses the hierarchical property as intended: in the top right corner, for instance,
we see a dense, dark-grey tile within a lighter tinted square, within a very sparse
tile. While for reasons of space we can only show these examples, these are
observations that hold in general—by which it may come at no surprise that by
allowing overlap we obtain better MDL scores.

Next, we inspect the results on Abstracts. This sparse dataset has no natural
order by itself, and when we apply SVD to order it, we find most of the 1s
are located in the top-left corner of the data. When we apply Stijl, we see
it correctly reconstructs this structure. Due to lack of space, however, we do
not give the visual representation. Instead, we investigate the most dense tile,
which covers the top-left corner. We find that it includes frequent words that are



often used in conjunction in data mining abstracts, including propose, efficient,
method, mine, and algorithm. Note that, by design, Stijl gives a high level
view of the data; that is, it tells you where the ones are, not necessarily their
associations. Extending it to recognise structure within tiles is future work.

7 Discussion

The experiments show Stijl discovers succinct tile trees that summarise the
data well. Importantly, the discovered tile trees consist of only few tiles, and are
even easier inspected by the hierarchical property of our models.

The complexity of Stijl is much lower than that of the naive locally opti-
mal approach; as with Θ(NM min(N,M)) its complexity is only squared in the
smallest dimension of the data. However, for datasets with both many rows and
columns, runtimes may be non-trivial. Stijl, however, does allow ample oppor-
tunity for optimisation. FindTile, for instance, can be trivially run in parallel
per parent tile, as well as over a and b.

As there is no such thing as a free lunch, we have to note that MDL is no
magic wand. In the end, constructing an encoding involves choices—choices one
can make in a principled manner (fewer bits is better), but choices nevertheless.
Here, our choices were bounded by ensuring optimality of FindTile. As such,
we currently ignore globally optimal encoding solutions, such as achievable by
maximum entropy modelling [5]. Although we could so obtain globally optimality
of the encoding, the effects of adding a tile become highly unpredictable, which
would break the locally optimal search of FindTile.

We assume the rows and columns of the data to be ordered. That is, in the
terminology of [8], we are interested in geometric tiles. Although [6, 8] showed
good geometric tilings can be found on spectrally ordered data, it would make
for engaging research to investigate whether we can find good orderings on the
fly, that is while we are tiling, ordering the data such that we optimise our score.

8 Conclusion

We discussed finding good hierarchical tile-based models for binary data. We
formalised the problem in terms of MDL, and introduced the Stijl algorithm for
greedily approximating the score on binary data with ordered rows and columns.
For unordered data, spectral techniques can be used to find good orders [8]. We
gave the FindTile procedure for which we proved it finds the locally optimal
tile in Θ(NM min(N,M)).

Experiments showed Stijl discovers high-quality tile trees, providing suc-
cinct description of binary data. Importantly, by their hierarchical shape and
small size, these models are easily interpreted and analysed by hand.

Future work includes optimising the encoded cost by mining tiles and orders
at the same time, as opposed to using ordering techniques oblivious to the target.
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A Proofs

Proof (of Proposition 1). Let i = tid(X; T ). It follows directly from the definition
that for any tile Z ∈ T we have tid(Z; T ′) = tid(Z; T ) if tid(Z; T ) < i, while
tid(Z; T ′) = tid(Z; T ) + 1 if tid(Z; T ) ≥ i. We also have i = tid(Y ; T ′). This
implies that area(Q; T ) = area(Q; T ′) for any Q ∈ T such that Q 6= X, which
implies that L(D | Q, T ) = L(D | Q, T ′). Consequently, we have

L(D, T ′)− L(D, T ) = L(D | Y, T ′) + L(D | X, T ′)− L(D | X, T ) + L(Y | T ′)
= L(u, v) + L(D | X, T ′)− L(o, z) + L(Y | T ′) .

Since area(Y ; T ′) ⊆ area(X; T ), we have p(X; T ′) = o−u and n(X; T ′) = z−v.
ut

Lemma 5. Define g(x, y, o, z) = L(x, y)+L(o− x, z − y). Assume 8 non-negative
numbers rp, rn, sp, sn, tp, tn, o, z. Assume that tp + tn > 0 and sp + sn > 0
and tp/(tp + tn) ≥ sp/(sp + sn). Write u = rp + sp and v = rn + sn. Assume
that u+ tp ≤ o, v+ tn ≤ z, and u/(u+ v) > o/(o+ z). Let q = g(u, v, o, z). Then
either g(rp, rn, o, z) < q or g(u+ tp, v + tn, o, z) ≤ q.

Proof. Assume that g(rp, rn, o, z) ≥ q. Note that because of u/(u+v) > o/(o+z)
we must have u > 0 and v < z. Assume that 0 < v and u < o. Define

A = − log
u

u+ v
, B = − log

v

u+ v
,

C = − log
o− u

o+ z − u+ v
, D = − log

z − v
o+ z − u+ v

.

Define h(x, y) = xA+ yB + (o− x)C + (z − y)D. Since h(x, y) is essentially the
length of encoding with possibly sub-optimal codes, it follows that

g(x, y, o, z) ≤ h(x, y) and g(u, v, o, z) = h(u, v) . (1)

Define f(x, n) = n(x(A−C)+(1−x)(B−D)). We have the following identity
between h and f ,

h(x, y)− h(u, v) = (x− u)(A− C) + (y − v)(B −D)

= f((x− u)/(x+ y − u− v), x+ y − u− v) .

Since u/(u + v) > o/(o + z), we have A < C and D < B, which implies that
f(x, n) is non-increasing w.r.t to x for any n ≥ 0.

Let m = sp + sn and define w = sp/m. We have

0 ≥ g(u, v, o, z)− g(rp, rn, o, z) ≥ h(u, v)− h(rp, rn) = −f(w,−m) = f(w,m) .

This implies that f(w, n) ≤ 0 for any n ≥ 0. Since tp/(tp + tn) ≥ w, we have
f(tp/(tp + tn), tp + tn) ≤ 0. This implies that

g(u+ tp, v + tn, o, z)− g(u, v, o, z) ≤ h(u+ tp, v + tn)− h(u, v)

= f(tp/(tp + tn), tp + tn) ≤ 0 .



Assume now that v = 0, this will make B =∞. However, we can repeat the
proof as long as D < B and Eq. 1 is satisfied. This can be done if we select B
high enough, say B = max g(x, y, o, z), where 0 ≤ x ≤ o and 0 ≤ y ≤ z. The
argument is similar for case u = o. ut

Proof (of Proposition 2). We will only show the case that there exist a and b
such that cost(u, v) ≤ cost(i, j) and a is a head border of b. The proofs for other
cases are similar.

Assume that i is not a head border of j. There exist indices 1 ≤ x < i ≤ y ≤ j
such that fr(x, i− 1) ≥ fr(i, y). Let rp = cnt(y + 1, j; p), rn = cnt(y + 1, j;n),
sp = cnt(i, y; p), sn = cnt(i, y;n), tp = cnt(x, i− 1; p), tn = cnt(x, i− 1;n).
Then the conditions in Lemma 5 are satisfied. Hence either cost(y + 1, j) <
cost(i, j) or cost(x, j) ≤ cost(i, j). Note that in the first case we must have
y + 1 ≤ j since cost(i, j) ≤ cost(j + 1, j) = L(o, z). We can now reset a = y + 1
or to a = x if it is the second case, and repeat the argument. Note that during
each step we either decrease the score or move i to the left. Since there are only
finite number of possible scores, this process will eventually stop and we have
found a = i that is a head border of b = j. ut
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