
Spotting Culprits in Epidemics: How many and Which ones?

Submitted for Blind Review

Abstract—Given a snapshot of a large graph, in which an
infection has been spreading for some time, can we identify
those nodes from which the infection started to spread? In other
words, can we reliably tell who the culprits are? In this paper
we answer this question affirmatively, and give an efficient
method called NETSLEUTH for the well-known Susceptible-
Infected virus propagation model.

Essentially, we are after that set of seed nodes that best ex-
plain the given snapshot. We propose to employ the Minimum
Description Length principle to identify the best set of seed
nodes and virus propagation ripple, as the one by which we
can most succinctly describe the infected graph.

We give an highly efficient algorithm to identify likely sets
of seed nodes given a snapshot. Then, given these seed nodes,
we show we can optimize the virus propagation ripple in
a principled way by maximizing likelihood. With all three
combined, NETSLEUTH can automatically identify the correct
number of seed nodes, as well as which nodes are the culprits.

Experimentation on our method shows high accuracy in the
detection of seed nodes, in addition to the correct automatic
identification of their number. Moreover, we show NETSLEUTH
scales linearly in the number of nodes of the graph.

I. INTRODUCTION

When considering large graphs, epidemics are everywhere.
For social networks, infectious diseases like the flu are prime
examples, but hypes/memes are similarly epidemic in nature;
whether it is friends discussing that latest gadget or phone,
or sharing a funny video, there are nodes ‘infecting’ each
other. Similarly, a computer virus can cause an epidemic
in a computer network, as can a contaminant in a water
distribution network. In each of these cases, given a single
snapshot of a partly infected network, an important and
challenging research question is how we can reliably identify
those nodes from which the epidemic started; whether for
inoculation to prevent future epidemics, or for exploitation
for viral marketing.

As such, given a snapshot of a large graph G(V, E) in
which a subset of nodes V ′ ⊆ V is currently infected, and
assuming the Susceptible-Infected (SI) propagation model,
we consider the problem of how to efficiently and reliably
find those seed nodes S ⊆ V ′ from which the epidemic
started, without requiring the user to choose the number seed
nodes in advance. In other words, we address the questions:
How many culprits are there, and who are they?

We propose to employ the Minimum Description Length
(MDL) principle [12] to identify that set of seed nodes, and
that virus propagation ripple starting from those nodes that
best describes the given snapshot. We give an highly efficient
algorithm to identify likely seed nodes, and show we can

Figure 1. Example: Culprits, how many, and which ones? A snapshot of
a 2D grid in which an infection has been stochastically spreading. Grey
circles are infected nodes, while Grey dots are un-infected. The 2 Blue stars
denote the true seeds. The 2 Red diamonds denote the seeds automatically
discovered by NETSLEUTH—that is, both in number (two) and location
(being spatially very close to the true seeds).

easily optimize the description length of the virus propagation
ripple for a given seed set by greedily maximizing likelihood.
As such, we can identify the best set of seed nodes in a
principled manner, without having to choose k, the number
of seed nodes in advance.

As an example, consider Figure 1. It depicts an example
grid-structured graph, in which a subgraph has been infected
by a stochastic process starting from two seed nodes. The
plot shows the true seed nodes, as well as the seed nodes
automatically identified by NETSLEUTH; it finds the correct
number of seed nodes, and places these where a human
would; in fact, the discovered seeds have a higher likelihood
for generating this infected subgraph than the true seed nodes.

We develop a two step approach by first finding high-
quality seeds given the number of seeds, and then using our
carefully designed MDL score to pinpoint the true number
of seeds. For the first part, we use the notion of ‘exoneration’
from the un-infected frontier—e.g., in Figure 1 the nodes
on the edge of the infected snapshot are unlikely to be
the culprits due to the large number of un-infected nodes
surrounding them. Based on this idea, we develop a novel
‘submatrix-laplacian’ method to find out the best seed sets
given a number of seeds (see Section IV for more details).
Given these seed-sets, we also give an efficient algorithm to
compute the MDL scores, thus finding the number of seeds
in a parameter-free way.

Although network infection models have been researched
extensively, identifying the seed nodes of an epidemic is

Table I
COMPARISON BETWEEN THREE CULPRIT-IDENTIFYING METHODS:
NETSLEUTH, RUMOR-CENTRALITY [30], AND EFFECTORS [18]

infection k>1 automatically O(·)†
model determines k

NETSLEUTH (our method) SI X X Linear
Rumor-centrality [30] SI – – Quadratic
Effectors [18] IC X – Quadratic
† Running time given for arbitrary graphs.

surprisingly understudied. We are, however, not the first to
research this problem. Recently, Shah and Zaman [29], [30]
developed rumor-centrality for identifying the single source
node of an epidemic. In contrast, we allow for multiple seed
nodes, and automatically determine their number. Lappas
et al. [18] studied the ‘Effectors’ problem of identifying k
seed nodes in a steady-state network snapshot, under the
Independent Cascade (IC) model. In contrast, we study the
SI model, allow the snapshots from any time during the
epidemic, and our approach is parameter-free as by MDL we
can automatically identify the best value for k. Furthermore,
and very importantly for large graphs, in comparison our
method is computationally much more efficient. Table I gives
a comparison of NETSLEUTH to these methods. We discuss
related work in more detail in Section VI.

Experimentation shows that NETSLEUTH detects seed
nodes and automatically identifies their number, both with
high-accuracy. With synthetic data we show it can handle
difficult fringe cases, and is in agreement with human
intuition. We show we reliably identify the correct number of
seed nodes on real data, and also that our detected seeds are
of very high quality (measured by multiple metrics). Finally,
we show our method scales linearly with the number of edges
of the graph.

The rest of the paper is organized in the typical way: pre-
liminaries, our problem formulation and method, experiments,
related work and then conclusion.

II. PRELIMINARIES

In this section we give notation, and introduce MDL and
the infection spreading model we use.

A. Notation

Table II gives some of the notation and symbols we will
be using in the paper. We consider undirected, unweighted
graphs G = (V, E) of N = |V| nodes. All logarithms in this
paper are to base 2, and we adopt the standard convention
that 0 log 0 = 0. We denote the transpose of any matrix or
vector V as V T . Finally note that LA is a submatrix of L(G),
not the laplacian matrix of GI .

B. The Susceptible-Infected Model

The most basic epidemic model is the so-called
‘Susceptible-Infected’ (SI) model [1]. Each object/node in

Table II
TERMS AND SYMBOLS

Symbol Definition and Description
SI model Susceptible-Infected model
β attack probability of the virus in the SI model
G = (V, E) graph under consideration
GI = (VI , EI) given infected subgraph of G
R ripple, list of sets of nodes how virus propagates
N |V|, number of nodes in graph G
NI |VI |, number of nodes in graph GI

d(i) degree of node i
F set of un-infected nodes having at least one infected

neighbor (in VI)
EF set of edges connecting nodes in F to VI
A(G) adjacency matrix of graph G (size N ×N)
A adjacency matrix of GI (size NI ×NI)
D(G) diagonal degree matrix of graph G
L(G) laplacian matrix of G i.e. L(G) = D(G)−A(G)
LA submatrix (size NI ×NI) of L(G) corresponding

to the infected graph GI

QMDL MDL-based culprits quality measure (see § V)
QJD set-Jaccard-distance-based culprits quality measure

(see § V)

the underlying graph is in one of two states - Susceptible
(S) or Infected (I). Once infected, each node stays infected
forever. Each infected node tries to infect each of its neighbors
independently with probability β in each discrete time-step,
which reflects the strength of the virus.

Note that here 1/β defines a natural time-scale (intuitively
it is the expected number of time-steps for a successful
attack over an edge). As an example, if we assume that the
underlying network is a clique of N nodes, under continuous
time, the model can be written as: dI(t)

dt = β(N − I(t))I(t),
where I(t) is the number of infected nodes at time t—the
solution is the logistic function and it is invariant to β × t.

C. Minimum Description Length Principle

The Minimum Description Length principle (MDL) [12],
is a practical version of Kolmogorov Complexity [22]. Both
embrace the slogan Induction by Compression. For MDL,
this can be roughly described as follows.

Given a set of models M, the best model M ∈M is the
one that minimizes L(M) + L(D |M), in which L(M) is
the length in bits of the description of M , and L(D |M) is
the length of the description of the data encoded with M .

This is called two-part MDL, or crude MDL—as opposed
to refined MDL, where model and data are encoded to-
gether [12]. We use two-part MDL because we are specifically
interested in the model: the seed nodes and ripple that give the
best description. Further, although refined MDL has stronger
theoretical foundations, it cannot be computed except for
some special cases. Note that MDL requires the compression
to be lossless in order to allow for fair comparison between
different M ∈M.

To use MDL, we have to define what our models M
are, how a M ∈ M describes the data at hand, and how
we encode this all in bits. Note, that in MDL we are only
concerned with code lengths, not actual code words.

III. OUR PROBLEM FORMULATION

Next we formulate our problem in terms of MDL. Our
goal is to obtain the most succinct explanation of ‘what
happened’. To do so, we require two ingredients: the first is
a formal objective—a cost function—which we discuss in
this section. The second is then an algorithm to find good
solutions, which we give in Section IV.

Our cost function will consist of two parts, 1) scoring the
seed set (Model cost) and 2) scoring the successive infected
nodes starting from the seed (Data cost).

We assume that both sender and receiver know the layout of
G = (V, E), but not which nodes are in GI = (VI , EI). This
makes, using the general formulation of MDL in Section II-C,
GI the data D we want to describe using our models M.
As such, informally, our goal is to identify those nodes, and
an infection propagation ripple starting from those nodes, by
which GI can most easily be described.

A. Cost of the Model

As our models we consider seed sets. A seed set S ⊆ VI
is a subset of |S| nodes of GI from which the infection starts
spreading—the ‘patients zero’, so to speak. We denote by
L(S) the encoded length, in bits, of a seed set S.

To describe a seed set S , we first have to encode how many
nodes S contains. This number, |S|, is upper-bounded by
the number of nodes in G. Hence, by using straight-forward
block-encoding we can encode |S| in logN bits, by which
we spend equally many bits to encode either a small or a
large number. In general, however, we favor small seeds sets:
simple explanations. The MDL optimal Universal code for
integers [28] is therefore a better choice as it rewards smaller
seed sets by requiring fewer bits to encode their size. With
this encoding, LN, the number of bits to encode an integer
n ≥ 1 is defined as LN(n) = log∗(n) + log(c0), where log∗

is defined as log∗(n) = log(n) + log log(n) + · · · , where
only the positive terms are included. To make LN a valid
encoding, c0 is chosen as c0 =

∑
J≥1 2

−LN(j) ≈ 2.865064
such that the Kraft inequality is satisfied.

To identify which nodes in G are seed nodes, we use the
very efficient class of data-to-model codes [33]. A data-to-
model code is essentially an index into a canonically ordered
enumeration of all possible data (values) given the model (the
provided information). Here, we know |S| unique nodes have
to be selected out of N , for which there are

(
N
|S|
)

possibilities.
Assuming a canonical order, log

(
N
|S|
)

gives us the length in
bits of an index to the correct set of node ids.

Combining the above, we now have L(S) for the number
of bits to identify a seed set S ⊆ VI as

L(S) = LN(|S|) + log

(
N

|S|

)
. (1)

B. Cost of the Data given the Model

Next, we need to describe the infected subgraph GI given a
seed set S . We do this by encoding the infection propagation
ripple, or the description of ‘what happened’. Starting from
the seed nodes, per time step we identify that set of nodes
that gets infected at this time step, iterating until we have
identified all the infected nodes.1

Propagation ripples: More formally, a propagation ripple
R is a list of node ids per time-step t, which represents the
order in which nodes of GI became infected, starting from
S at time t = 0. Let us write VtI(S, R) to indicate the set
of infected nodes at time t starting from seed set S and
following ripple R, with V0

I = S . For readability, we do not
write S and R wherever clear from context. As such, a valid
propagation ripple R is a partitioning of node ids VI \ S of
GI , where every node in a part is required to have an edge
from a node j ∈ Vt−1I .

Clearly, however, not every ripple from the seed set to
the final infected subgraph is equally simple to describe. For
instance, the more infected neighbors an uninfected node
has, the more likely it is that it will get infected, as it is
under constant attack—therefore, it should be more succinct
to describe that this node gets infected than it would for a
node under single attack.

Frontier sets: To encode a ripple R, at each time t we
consider the collection of nodes currently under attack given
the SI model (i.e. non-infected nodes with currently atleast
one infected neighbor, or if t = 0, neighbors to a seed-node
∈ S). We refer to this set as F t, for the frontier-set at time
t. Define attack degree a(n) of a non-infected node n as
the number of infected neighbor nodes it has at the current
iteration, i.e. a(n) = |{j ∈ V | ejn ∈ E ∧Xj(t)}|, in which
Xj(t) is an indicator function for whether node j is infected
at time t.

We divide F t into disjoint subsets F ti per attack degree
i, that is, into sets of nodes having the same attack degree.
As such, we have F t = F t1 ∪ F t2 ∪ . . ., and correspondingly
f t1, f

t
2, . . . for the sizes of these subsets (we will drop using

the t superscript, when clear from context).
Starting from the seed set, for every time step t the receiver

can easily construct the corresponding frontier set F t—which
leaves us to transmit which of the nodes, if any, in the frontier
set got infected in the current iteration. As, however, the
infection probabilities per attack degree differ, we transmit
this information per F td.

Probability of Infection: The SI model assumes an attack
probability parameter β—so, the independent probability pd
of a node in Fd being infected is: pd = 1− (1− β)d. Given
pd we can write down the probability distribution of a total of

1When not interested in the actual ripple R, one could encode GI by its
overall probability starting from S. Obtaining this probability, however, is
very expensive, even by MCMC sampling. As we will see in Sections IV
and V computing a good ripple is both cheap and gives good results.

md nodes being infected for each subset Fd. This is simply
a Binomial with parameter pd i.e.

p(md | fd, d) =
(
fd
k

)
pmd

d (1− pd)fd−md .

Hence, as such, a value for β determines p.
Encoding a Wave of Attack: Given p, a probability

distribution for seeing md nodes out of fd infected given an
attack degree d, we need − log p(md | fd, d) bits to optimally
transmit the value of md. That is, we encode md using an
optimal prefix code—for which we can calculate the optimal
code lengths by Shannon entropy [6]. Then, once we know
both fd and md, we can use code words of resp. − log md

fd
and − log 1 − md

fd
bits long to transmit whether a node in

Fd got infected or not. This gives us

L(F t) = −
∑
Ft

d∈Ft

(
log p(md|fd, d) +md log

md

fd

+ (fd −md) log 1−
md

fd

)
(2)

for encoding the infectees in the frontier set at time t.
Then, for the recipient to know when to stop reading, we

have to transmit how many time steps until we have reached
GI . The number of iterations T will be transmitted just like
|S|, using LN. For the ripple R, starting from the frontier-set
defined by the seed nodes S, we iteratively transmit which
nodes got infected at t+1—which in turn allows the recipient
to construct F t+1. Note that, by L(F t) we assume ripple R
to be in time scale of 1/β. That is, for low β we consider a
lower time resolution than for high β. This is because the
SI model displays a natural invariance of time-scale (see
Section II-B). So we have ripple R that gives the infections
at every 1/β time-steps.

With the above, we have L(R | S) for the encoded length
of a ripple R starting at a seed set S as

L(R | S) = LN(T) +

T∑
t

L(F t) . (3)

C. The Problem

With L(S) and L(R | S), we have as the total description
length L(GI ,S, R) of an infected subgraph GI of G
following a valid infection propagation ripple R starting
from a set of seed nodes S by

L(GI ,S, R) = L(S) + L(R | S) .

Note that as G is constant over all seed sets S and ripples
R, we can safely ignore it in the computation of the total
encoded size, for its encoded length would be constant term
and hence not influence the selection of the best model.

By which we can now formally state our problem.

Minimal Infection Description Problem Given a snap-
shot of a graph G(V, E) of N nodes, of which the subgraph

GI(VI , EI) of NI nodes are infected, and an infection
probability β, by the Minimum Description Length principle
we are after that seed set S and that valid propagation ripple
R for which

L(GI ,S, R)

is minimal for the Susceptible-Infected propagation strategy.

Clearly, this problem entails a large search space - both in
the possible seed-subsets of VI and the possible propagation
ripples given any seed-set. In fact, as shown by Shah and
Zaman [30], even the problem of just finding one MLE seed
for a given infected snapshot in an arbitrary graph is very
hard (#P-Complete, equivalent to counting the number of
linear extensions of a poset). Further, the provable algorithms
they give are for one seed on d-regular trees only. To tackle
the problem on general graphs we hence resort to heuristics.

IV. PROPOSED METHOD

The outline of our approach is as follows: given a fixed
number of seeds k, we identify a high-quality k-seed set.
Given these seed nodes, we optimize the propagation ripple.
With these two combined, we can use our MDL score to
identify the best k.

A. Best seed-set given number of seeds — ‘Exoneration’

A central idea is that intuitively, un-infected nodes should
provide some degree of ‘exoneration’ from ‘blame’ for the
neighboring infected nodes. See Figure 2—it shows two
illustrative examples of an infected chain (a) and a chain
with a star in the middle (b) (colored nodes are infected and
blue denote the true seeds). Note that while the node X is
the most central among the infected nodes and is rightly the
most likely seed, the node Y is not a likely seed because of
the many un-infected nodes surrounding it. In fact, in this
case the most likely starting points would be the two Blue
nodes. Hence any method to identify the seed-sets should
take into account the centrality of the infected nodes among
the infected graph, but also penalize nodes for being too
close to the un-infected frontier (the ‘exoneration’). As we
explain next, our method is able to do this in a principled
manner.

B. Finding best single seed—Our Main Idea

We first explain how to find the best single seed and then
how to extend it to multiple seeds. Jumping ahead, the main
idea is as follows.

Main Idea: The single best seed s∗ is the one with the
highest score in ~u1 i.e.

s∗ = argmax
s
~u1(s)

where ~u1 is the smallest eigenvector of the laplacian subma-
trix LA as defined in Table II. Next, we give the justification.

X

(a) A chain

Y

(b) A chain-star
Figure 2. Centrality is not enough - effects of ‘exoneration’: Infection
snapshot examples (colored nodes are infected, blue nodes are the true seeds)
(a) Node X is the most central among the infected nodes; (b) Node Y is
the most central among infected nodes, but the high count of non-infected
neighbors ‘exonerates’ it.

C. Finding the best single seed—Justification

From Section III, it is clear that nodes that are not in
either the final frontier set F or VI play no role, as they
were not infectious nor could have been infected. Hence,
WLOG, assume G contains only the infected subgraph GI
and the frontier set F . Also, assume nodes are numbered in
such a way that the first |V − VI | nodes are the un-infected
nodes and the rest are the infected ones. If the total number
of nodes in the graph is N , the number of infected nodes is
NI , then the number of un-infected nodes in G is N −NI .
Further notation is given in Table II.

Let Xi(t) be the indicator (0/1) Random Variable denoting
if node i in the graph is infected or not at time t (1 = infected,
0 = un-infected). Let Yij(t) be the indicator random variable
denoting if node j successfully attacks i at time t. Consider
the following update equation for any node i ∈ VI :

Xi(t+ 1) = Xi(t) + (4)
(1−Xi(t))×∨
j∈N (i)

Yij(t)(Xj(t)−Xi(t) +Xi(t))

Following the above equation, if Xi(t) = 1 then Xi(t+1) =
1, i.e., once a node is infected, it stays infected. Also if
Xi(t) = 0, then Xi(t + 1) =

∨
j∈N (i) Yij(t)Xj(t). Or in

other words, an uninfected node may get infected only if
an infected neighbor successfully transmits the infection.
Additionally for any node i ∈ V − VI , we define Xi(t) = 0,
as these nodes were not infected at all during the infection
process. Hence, the above equations exactly define a discrete-
time SI process but with the constraint that the nodes in the
given final frontier set always stay un-infected, thus enforcing
the ‘exoneration’ discussed before. Hence we want to find
the seed node which maximizes spread in this ‘constrained’
epidemic, which we show how to next.

For any node i ∈ VI , taking expectations both sides of
Equation 4, and using the fact that for any indicator random

variable X , E[X] = Pr(X = 1), we get:

Pi(t+ 1) = Pi(t) + U − V (5)

where,

Pi(t) = Pr(Xi(t) = 1)

U = E

 ∨
j∈N (i)

Yij(t)(Xj(t)−Xi(t) +Xi(t))

V = E

Xi(t)×
∨

j∈N (i)

Yij(t)(Xj(t)−Xi(t) +Xi(t))

Clearly, as all the terms inside are positive,

V ≥ 0, U ≥ 0 (6)

Also,

U ≤
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t) + Pi(t))

=
∑

j∈N (i)

A(G)ijPi(t) +
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t))

as an infected node j attacks any of its neighbors i inde-
pendently with probability A(G)ij (i.e. E[Yij(t)] = A(G)ij)
and because by linearity of expectation, for any two events
indicator random variables 1A and 1B , we have 1A ∨1B =
1A + 1B − 1A1B ⇒ E[1A ∨ 1B] ≤ E[1A] + E[1B]. Also
note that: ∑

j∈N (i)

A(G)ijPi(t) ≤ dmax × Pi(t) (7)

where dmax is the largest degree in graph G. Thus,

U ≤ dmaxPi(t) +
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t)) (8)

From Equations 6 and 8, we can conclude that, for each
node i ∈ VI :

Pi(t+ 1) ≤ Pi(t) + dmaxPi(t)

+
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t))

Let σ = 1 + dmax. Recall that ∀t, Pi(t) = 0 for
any eventual un-infected node i ∈ V − VI . Let ~P (t) =
[P1(t), P2(t), . . . , PN (t)]T (over all the nodes in V). Then
we can write:

~P (t+ 1) ≤ σ(I − 1

σ
M)~P (t) (9)

where, the matrix M (size N ×N) is:

M =

∣∣∣∣0N−NI ,N−NI
0N−NI ,NI

0NI ,N−NI
LA

∣∣∣∣
where we write 0N,M for an all-zeros matrix of size N ×M .
Let the subvector of ~P (t+ 1) corresponding to the infected

nodes be written as ~PI(t+ 1). Then continuing from above
and using the upper bound as an approximation, we get:

~PI(t+ 1) ≈ σ(I − 1

σ
LA)~PI(t) (10)

= σ(I − 1

σ
LA)

t ~PI(0) (11)

= σ
∑
i

λti~ui~u
T
i
~PI(0) (12)

where, λi and ~ui are the eigenvalues and eigenvectors of the
matrix I − 1

σLA. We have the following two lemmas:

Lemma 1. The largest eigenvalue λ1 and eigenvector
~u1 of the matrix I − 1

σLA are all positive and real.

Proof: (Details omitted for brevity) The matrix I− 1
σLA

is non-negative, and imagining I − 1
σLA as an adjacency

matrix, the corresponding graph is irreducible, as graph GI
(adjacency matrix A) is connected. We then get the lemma
due to the Perron-Frobenius theorem [23].

Lemma 2. The largest eigenvalue of matrix I− 1
σLA and

the smallest eigenvalue of LA are related as λ1(I− 1
σLA) =

1− 1
σλN (LA).

Proof: (Details omitted for brevity) It is easy to see
that any eigenvalue eig(I − 1

σLA) = 1− eig(1σLA). As the
matrices are symmetric, all the eigenvalues involved are real.
By the Cauchy eigenvalue interlacing theorem [31] applied
to L(G), all the eigenvalues of any co-factor CLG of L(G)
are positive. By the famous Kirchhoff’s matrix theorem [7],
the determinant of any co-factor CLG is also non-zero as
it counts the number of spanning trees of G. Also, it is
well-known that the determinant of any matrix is just the
product of its eigenvalues [31]. Hence, all eigenvalues of
any co-factor matrix CLG of L(G) are strictly positive. We
can similarly apply eigenvalue interlacing successively to
a suitable CLG and so on till we get to LA (a principal
submatrix of L(G)), and get that all eigenvalues of LA are
strictly positive. The lemma follows then.

Hence, the eigenvector ~u1 is also the eigenvector corre-
sponding to the smallest eigenvalue of LA.

Now, from Equation 12 and Lemma 1, we have:

~PI(t+ 1) = σλt1
∑
i

λti
λt1
~ui~u

T
i
~PI(0) (13)

≈ σλt1~u1~u
T
1
~PI(0) (14)

assuming a substantial eigen-gap or ‘big-enough’ t. Now
assuming that ~PI(0) is all zero except for a single seed s
for which it is 1, we can conclude that ultimately in our
‘constrained’ epidemic,

∀i ∈ VI , P r(Xi = 1|s) ∝∼ ~u1(i)~u1(s) (15)
∀i ∈ V − VI , P r(Xi = 1|s) = 0 (16)

Clearly the most likely single seed s∗ would be:

s∗ = argmax
s

[∑
i∈VI

Pr(Xi = 1|s)

+
∑

i∈V−VI

(1− Pr(Xi = 1|s))

]
Using Equations 15 and 16,

s∗ ≈ argmax
s
~u1(s)

∑
i∈VI

~u1(i)

= argmax
s
~u1(s) (17)

Hence, for a single seed, we just need to find the node with
the largest score in ~u1 (which is also the smallest eigenvector
of the laplacian submatrix LA from Lemma 2).

D. Finding best k-seed set

Note that simply taking the top-k in the above eigenvector
will not give good k-seed-sets due to lack of diversity. This
is because the error in the upper-bound approximation used
in Equation 11 will become larger due to increase in the
norm of ~PI(0). Hence, we treat the newly chosen seed, say
s∗, as un-infected, effectively exonerating its neighbors and
boosting diversity. We redo our computation on the resulting
smaller infected graph, but a potentially larger frontier set—
hence, we take the next best seed given the s∗ that has already
been chosen. So for any given k, we successively find the
best next seed, given the previous choices, by removing the
previously chosen seeds from the infected set and solving
Equation 17. For example, in Figure 1, the top suspect (Red
on the right) will have a lot of suspicious neighbors as well.
Thus, using our exoneration technique, the algorithm will be
forced away from them towards the remaining Red seed.

E. Finding a good ripple

As discussed before, once we find the best seed-set Sk for
a given k, we optimize the propagation ripple of Sk to GI to
minimize the total encoded size. Recall from Section III that
this involves minimizing L(R | S), which consists of two
terms. First, we have the cost of encoding the length of the
ripple, the number of time-steps. While LN does grow for
higher values of T , in practice this term will be dwarfed by
the actual encoding of the subsequent frontier sets. As such,
minimizing L(R | S) essentially comes down to minimizing∑T
t L(F t), or, in other words, maximizing the likelihood of

the ripple R. Further recall that the SI model has a natural
scaling invariance, 1/β. As our score takes this into account,
the ripple with the smallest description length should too.

Hence, we design the following procedure. For each attack-
degree set Fd, at any iteration we scale the number of attacks
by 1/β i.e. a set of size fd is equivalent to a set of size
fd/β. Then, to get the overall MLE ripple, we adopt the
following heuristic. We assume that the overall MLE ripple

Algorithm 1 NETSLEUTH

Input: G(V, E) ≡ G∗I ∪F∗, G∗I(VI , EI) (the infected graph)
and F∗ (the frontier set).

Output: S = the set of seeds (culprits).
1: L(G) = D(G)−A(G), the Laplacian matrix correspond-

ing to graph G.
2: S = {}
3: GI = G∗I
4: while L(GI ,S, R) decreases do
5: LA = the submatrix of L(G) corresponding to GI .
6: v = eigenvector of LA corresponding to the smallest

eigenvalue.
7: next = argmaxi v(i)
8: S = S ∪ {next}
9: R = ripple maximizing likelihood of GI from S

10: GI = GI\{next} (Graph GI with node next re-
moved)

11: end while
12: return S

always performs a locally optimal next step. Hence this boils
down to choosing the most-likely nodes to get infected at
any given step, for a given frontier set F .

It is well-known that a Binomial distribution B(n, p) has
its mode at b(n + 1)pc. Using this fact, at any iteration t,
taking into account the scaling, we can see that the most likely
number of nodes infected in an attack-degree set Fd would
be nd = b(fd/β + 1)× pdc—where pd as defined before in
Section III is the attack probability in the set Fd. As such, we
can simply uniformly choose this number of nodes from the
Fd, as each node in Fd is equally likely to be infected. We do
this for every non-empty attack-degree set, for every iteration,
until we have infected exactly the observed snapshot. This
way, we obtain a most likely propagation ripple for any given
seed-set Sk and can subsequently score it using MDL.

Finally, we stop getting more seeds when the MDL score
for Sk increases as we increase k. Algorithm 1 gives the
pseudo-code and Lemma 3 shows the running time for our
algorithm NETSLEUTH.

Lemma 3 (Running Time of NETSLEUTH). The time
complexity of NETSLEUTH is O(k∗(EI + EF + VI)).

Proof: We keep finding Sk for each seed-set size until
MDL tells us to stop. Hence the running time is O(k∗(EI +
TRIPPLE + TMDL)), if k∗ is the optimal seed-set size and
TMDL is the running time of computing the MDL score given
the seed set size is k∗. Here we used the fact that calculating
the eigenvector using the Lanczos method is approximately
O(E) (# edges) for sparse graphs.

The worst-case complexity TMDL of calculating
L(GI ,S, R) for a given GI , S , and R, is O(EI + EF +VI).
The L(S) term is O(1). For the L(R | S) term, we need
to iterate over the ripple, which is at most VI steps long.

We only have to update the frontier set F when one or
more nodes got infected, for which we then have to update
the attack degrees of the nodes connected to the nodes
infected at time t. Hence we traverse every edge in EI + EF ,
and every node in VI , which gives it the complexity of
O(EI + EF + VI).

Finally, the running time TRIPPLE of computation of the
MLE ripple for a given Sk is also O(EI + EF + VI).

So the overall complexity of NETSLEUTH is O(k∗(EI +
EF + VI)).

Hence NETSLEUTH is linear in the number of edges and
vertices of the infected sub-graph and the frontier set, which
makes our method scalable for large graphs (as compared to
the methods in [18], [30] which, even for detecting a single
seed, are O(N2)).

V. EXPERIMENTS

Here we experimentally evaluate NETSLEUTH, in particu-
lar its effectiveness in finding culprits—whether it correctly
identifies (a) how many as well as (b) which ones—and its
(c) scalability.

A. Experimental Setup

We implemented NETSLEUTH in Matlab, and in addition
we implemented the SI model as a discrete event simulation
in C++. All reported results are averaged over 10 independent
runs (so we generate 10 graphs for each seed set).

In our study we use both synthetic and real networks—we
chose synthetic networks exemplifying different types of
situations. We consider the following networks:

1) GRID is a 60×60 2D grid as shown in Figure 1.
2) CHAIN-STAR It is a graph of total 107 nodes. The

first 7 nodes form a linear chain and the middle node
has 100 additional neighbors.

3) AS-OREGON The Oregon AS router graph which is a
network graph collected from the Oregon router views.
It contains 15 420 links among 3 995 AS peers.2

For the experiments on AS-OREGON, we ran the experi-
ments for true-seed count k∗ = 1, 2, 3. So for each seed-set,
we run a simulation till at least 30% of the graph is infected,
and give the resulting footprint as input to NETSLEUTH. Note
that, the larger the number of infections, the tougher it is to
find the true seeds, as in the SI model any seed will eventually
infect the whole graph with certainty. Finally, we make sure
that the infected sub-graph was connected—otherwise, we
just have separate problem instances.

As discussed in the introduction and Section VI, the exist-
ing proposals for identifying culprits consider significantly
different problems settings than we do (see Table I); the
Rumor Centrality of Shah and Zaman [29], [30] can only
discover one seed node, while Effectors of Lappas et al. [18]
even consider a completely different infection model. As

2For more information see http://topology.eecs.umich.edu/data.html.

(a) k∗ = 1 (b) Scatter plot of Jaccard scores (c) Average QMDL and QJD

(d) k∗ = 2 (e) Scatter plot of Jaccard scores (f) Average QMDL and QJD

(g) k∗ = 3 (h) Scatter plot of Jaccard scores (i) Average QMDL and QJD

Figure 3. Effectiveness of NETSLEUTH in answering both How many and Which ones - Results of our experiments on the AS-OREGON graph for
true-seed-count k∗ = 1, 2, 3 (rows, subfigures (a-c), (d-f), (g-i) respectively). First column, (a),(d),(g), MDL scores as a function of k found by NETSLEUTH
are near-convex; also we recover the true number in all cases. Second column, (b),(e),(h), scatter plots of Jaccard scores (JDx(VI)) of NETSLEUTH seeds
(y-axis) and the corresponding true seeds (x-axis). On or below the 45-degree line is better. Each point average of 10 runs. Note that for many runs the
seeds identified by NETSLEUTH score exactly or even better than the true seeds. Third column, (c),(f),(i), average QMDL and QJD scores for the seeds
returned by NETSLEUTH. Each bar represents the average over 90 different seed-sets. Note that all the bars are close to 1, indicating that we consistently
find high-quality seed sets both with the Jaccard measure, and with the MDL measure.

such we can not meaningfully compare performances, and
hence here only consider NETSLEUTH.

Evaluation Function—a subtle issue: How to evaluate the
goodness of a seed set? That is, in Figure 1, how close
are the red seeds (recovered) from the blue seeds (true)?
Notice that the recovered seeds may actually have better
score than the actual ones, for the same reason that the
sample mean of a group of 1D Gaussian instances gives
lower sum-squared-distances than the theoretical mean of the
distribution. Moreover, even for evaluation, it is intractable
to compute the exact probability of observing the footprint
from a given seed-set.

Thus we propose two quality measures. The first, QMDL,
is based on our MDL: we report the ratio of the MDL score
of our seeds, vs. the MDL score of the actual seeds i.e.

QMDL =
L(GI ,S, R)
L(GI ,S∗, R∗)

(18)

Clearly, the closer to 1, the better.
The second QJD intuitively measures the overlap of the

footprint produced by a seed-set S and the input footprint
GI(VI , EI). Clearly, the candidate seed-set S can produce
n footprints, when we run n simulations; so we compute

E[JDS(VI)], the average Jaccard distance3 of all these n
footprints, w.r.t. the true input footprint VI . As with QMDL,
we normalize it with the corresponding score E[JDS∗(VI)]
for the true seed-set, and thus report the ratio,

QJD =
E[JDS(VI)]
E[JDS∗(VI)]

(19)

Again, the closer to 1, the better.

B. Effectiveness of NETSLEUTH in identifying How Many

In short, NETSLEUTH was able to find the exact number
of seeds for all the cases. Figures 3(a),(d),(g) show the
MDL score as a function of k = 1, 2, . . . , 6 seeds found
by NETSLEUTH before stopping, for true seed-sets with (a)
k∗ = 1, (b) k∗ = 2 and (c) k∗ = 3 respectively on the AS-
OREGON network. Note that the plots show near-convexity,
with the minimum at the true k∗, justifying our choice of
stopping after j = 6 iterations of increasing scores. It also
shows the power of our approach, as we can easily recover
the true number of seeds using a principled approach.

C. Effectiveness of NETSLEUTH in identifying Which Ones

In short, in addition to finding the correct number of seeds,
NETSLEUTH is able to identify good-quality seeds with high
accuracy. For our synthetic graphs, NETSLEUTH is able to
point out that there must have been exactly 2 seeds for
both the GRID and CHAIN-STAR examples—respectively
identified as the Red circles in Figure 1, and the Blue nodes
in Figure 2(b)), agreeing with the ground-truth and intuition.

Figures 3(b-c),(e-f),(h-i) show the results of our experi-
ments for different number k∗ = 1, 2, 3 of true seeds on the
AS-OREGON graph. We randomly selected 90 seed-sets of
each size. We made sure that the seed-sets contained both
well-connected and weakly connected nodes. Each point is
an average of 10 runs.

Firstly, although not shown in the figures, NETSLEUTH
was able to perfectly recover the true number of seeds in
almost all cases. For each seed-set, we calculate JDS(VI)
for the seeds returned by NETSLEUTH and the true seeds and
give the scatter plot in Figures 3(b)(e)(h) for true-seed count
k∗ = 1, 2, 3 respectively (rows). Hence points on or below
the 45-degree line (solid blue) are better. Clearly, almost
all points are concentrated near the diagonal, showing high
quality. In fact, many points are exactly on the line, meaning
we are able to recover the true seeds perfectly for many cases.
We do not show similar plots with our MDL score due to
lack of space.

Next, we calculate QMDL and QJD averaged over all the
different seed-sets (of the same size for k∗ = 1, 2, 3). Results
are shown in the bar plots (third column) of Figures 3(c)(f)(i).
The true-seed scores are represented by the dotted line at 1,
for both QMDL and QJD. Clearly, all of bars are close to 1,

3We use the standard definition of Jaccard Distance between two sets A
and B = 1− |A∩B||A∪B| .

Figure 4. NETSLEUTH Scalability: Wall-clock running time (in seconds) for
increasingly larger infected snapshots of AS-OREGON (as the complexity
just depends on the size of the snapshot) k∗ = 1. Each point average of 10
runs. Note that, as expected, the running time scales linearly.

demonstrating that NETSLEUTH consistently finds very good
culprits. Moreover, both QMDL and QJD quality metrics are
similar in magnitude for all k∗’s — increasing our confidence
in our results.

D. Scalability

Figure 4 demonstrates the scalability of NETSLEUTH after
running it on increasingly larger infected snapshots of AS-
OREGON (as the complexity just depends on the size of the
snapshot). As expected from our Lemma 3, the running-time
is linear on the number of edges of the infected graph.

VI. RELATED WORK

As mentioned in the introduction, although diffusion
processes have been widely studied, the problem of ‘reverse
engineering’ the epidemic has not received much attention,
except papers by Shah and Zaman [29], [30] and Lappas et
al. [18]. Shah and Zaman [29], [30] formalized the notion
of rumor-centrality for identifying the single source node
of an epidemic under the SI model, and showed an optimal
algorithm for d-regular trees. Lappas et al. [18] study the
problem of identifying k seed nodes, or effectors of a partially
activated network, which is assumed to be in steady-state
under the IC (Independent-Cascade) model. In contrast, we
allow for (a) multiple seed nodes, (b) a snapshot from any
time during the infection, and (c) find the number of seeds
automatically, even for general graphs. Finally we are also
more efficient with linear time on edges of the infected graph.
Also we are, to the best of our knowledge, the first to employ
MDL with the goal of identifying culprits.

We categorize the rest of the related work into areas
dealing with epidemic/cascade-style processes and problems
related to them like epidemic thresholds, immunization and
influence maximization. There is a lot of research interest
in studying different types of information dissemination pro-
cesses on large graphs in general, including (a) information
cascades [2], [9], (b) blog propagation [11], [17], [21], [27],
and (c) viral marketing and product penetration [19].

Epidemic Thresholds: The canonical text-book for
epidemiological models like SI is Anderson and May [1].
Much research in virus propagation studied the so-called
epidemic threshold, that is, to determine the condition under
which an epidemic will not break out [4], [8], [16], [24],
[25].

Influence Maximization: An important problem under
the viral marketing setting is the influence maximization
problem [5], [10], [13], [15], [27]. Another remotely related
work is outbreak detection [20] in the sense that we aim to
select a subset of ‘important’ nodes on graphs.

Immunization: Another remotely related problem for
such propagation processes is immunization - the problem
of finding the best nodes for removal to stop an epidemic,
with effective immunization strategies for static and dynamic
graphs [3], [14], [26], [32].

VII. CONCLUSIONS

In this paper we discussed finding culprits, the challenging
problem of identifying the nodes from which an infection in a
graph started to spread. We proposed to employ the Minimum
Description Length principle for identifying that set of seed
nodes from which the given snapshot can be described most
succinctly. We introduced NETSLEUTH (based on a novel
‘submatrix-laplacian’ method), a highly efficient algorithm for
both identifying the set of seed nodes that best describes the
given situation, and automatically selecting the best number
of seed nodes—in contrast to the state of the art.

Experiments showed NETSLEUTH attains high accuracy
in detecting the seed nodes, as well as correctly identifying
their number. Importantly, NETSLEUTH scales linearly with
the number of edges of the infected graph, O(EF +EI +VI),
making it applicable on large graphs.

REFERENCES

[1] Roy M. Anderson and Robert M. May. Infectious Diseases
of Humans. Oxford University Press, 1991.

[2] Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A
theory of fads, fashion, custom, and cultural change in
informational cascades. Polit. Econ., 100(5):992–1026, 1992.

[3] Linda Briesemeister, Patric Lincoln, and Philip Porras. Epi-
demic profiles and defense of scale-free networks. WORM
2003, 2003.

[4] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Falout-
sos. Epidemic thresholds in real networks. TISSEC, 10(4),
2008.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale social
networks. KDD, 2010.

[6] Thomas M. Cover and Joy A. Thomas. Elements of Informa-
tion Theory. Wiley-Interscience New York, 2006.

[7] Dragos M. Cvetković, Michael Doob, and Horst Sachs. Spectra
of Graphs: Theory and Applications, 3rd Ed. 1998.

[8] A. Ganesh, L. Massoulié, and D. Towsley. The effect of
network topology on the spread of epidemics. In INFOCOM,
2005.

[9] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the
network: A complex systems look at the underlying process
of word-of-mouth. Marketing Letters, 2001.

[10] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. Simpath:
An efficient algorithm for influence maximization under the
linear threshold model. ICDM, 2011.

[11] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. In WWW, 2004.

[12] Peter Grünwald. The Minimum Description Length Principle.
MIT Press, 2007.

[13] Habiba and Tanya Berger-Wolf. Working for influence: effect
of network density and modularity on diffussion in networks.
ICDM DaMNet, 2011.

[14] Yukio Hayashi, Masato Minoura, and Jun Matsukubo. Re-
coverable prevalence in growing scale-free networks and the
effective immunization. arXiv:cond-mat/0305549 v2, Aug. 6
2003.

[15] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread
of influence through a social network. In KDD, 2003.

[16] J. O. Kephart and S. R. White. Measuring and modeling
computer virus prevalence. In SP, 1993.

[17] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and
Andrew Tomkins. On the bursty evolution of blogspace. In
WWW, 2003.

[18] Theodoros Lappas, Evimaria Terzi, Dimitrios Gunopulos, and
Heikki Mannila. Finding effectors in social networks. In KDD,
pages 1059–1068. ACM, 2010.

[19] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman.
The dynamics of viral marketing. In EC, 2006.

[20] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos
Faloutsos, Jeanne VanBriesen, and Natalie S. Glance. Cost-
effective outbreak detection in networks. In KDD, pages
420–429, 2007.

[21] Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie
Glance, and Matthew Hurst. Cascading behavior in large blog
graphs: Patterns and a model. In SDM, 2007.

[22] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and its Applications. Springer, 1993.

[23] C. R. McCuler. The many proofs and applications of Perron’s
theorem. SIAM Review, 42, 2000.

[24] R. Pastor-Santorras and A. Vespignani. Epidemic spreading
in scale-free networks. Phys. Rev. Let. 86, 14, 2001.

[25] B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos,
Nicholas Valler, and Christos Faloutsos. Threshold conditions
for arbitrary cascade models on arbitrary networks. In ICDM,
2011.

[26] B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis
Faloutsos, and Christos Faloutsos. Virus propagation on
time-varying networks: Theory and immunization algorithms.
ECML-PKDD, 2010.

[27] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD, 2002.

[28] Jorma Rissanen. Modeling by shortest data description. Annals
Stat., 11(2):416–431, 1983.

[29] Devavrat Shah and Tauhid Zaman. Detecting sources of
computer viruses in networks: theory and experiment. In
SIGMETRICS, pages 203–214, 2010.

[30] Devavrat Shah and Tauhid Zaman. Rumors in a network:
Who’s the culprit? IEEE TIT, 57(8):5163–5181, 2011.

[31] Gilbert Strang. Linear Algebra and its Applications. Harcourt
Brace Jonanovich, San Diego, 3rd edition, 1988.

[32] Hanghang Tong, B. Aditya Prakash, Charalampos E.
Tsourakakis, Tina Eliassi-Rad, Christos Faloutsos, and
Duen Horng Chau. On the vulnerability of large graphs.
In ICDM, 2010.

[33] N.K. Vereshchagin and P.M.B. Vitanyi. Kolmogorov’s structure
functions and model selection. IEEE TIT, 50(12):3265– 3290,
2004.

