Modern MDL meets Data Mining
Insight, Theory, and Practice

Jilles Vreeken
CISPA Helmholtz Center for Information Security

Kenji Yamanishi
The University of Tokyo
About the presenters

Jilles Vreeken

Kenji Yamanishi
About this tutorial

Approximately 3.5 hours long

Extensive, but *incomplete* introduction to
- MDL theory
- MDL practice *in data mining*
- naturally a bit biased
Schedule

8:00am Opening
8:10am Introduction to MDL
8:50am MDL in Action
9:30am break
10:00am Stochastic Complexity
11:00am MDL in Dynamic Settings
Schedule

8:00am Opening
8:10am Introduction to MDL
8:50am MDL in Action
9:30am break
10:00am Stochastic Complexity
11:00am MDL in Dynamic Settings
Schedule

8:00am Opening
8:10am Introduction to MDL
8:50am MDL in Action
9:30am break
10:00am Stochastic Complexity
11:00am MDL in Dynamic Settings
Part 1

Introduction to MDL

Jilles Vreeken
Induction by Simplicity

“The simplest description of an object is the best”
Kolmogorov Complexity

\[K_U(x) = \min \{ l(y) \mid U(y) \text{ halts and } U(y) = x \} \]

The Kolmogorov complexity of a binary string \(x \) is the length of the shortest program \(y^* \) for a universal Turing Machine \(U \) that generates \(s \) and halts.

(Solomonoff 1960, Kolmogorov 1965, Chaitin 1969)
Kolmogorov Complexity

\[K_U(x) = \min_y \{ l(y) \mid U(y) \text{ halts and } U(y) = x \} \]

The Kolmogorov complexity of a binary string \(x \) is the length of the shortest program \(y^* \) for a universal Turing Machine \(U \) that generates \(s \) and halts.

(Solomonoff 1960, Kolmogorov 1965, Chaitin 1969)
Ultimately Impractical

Kolmogorov complexity $K(x)$, or rather, the Kolmogorov optimal program x^* is not computable.

We can approximate it from above, but, this is not very practical.

(simply not enough students to enumerate all Turing machines)

We can approximate it through off-the-shelf compressors, yet, this has serious drawbacks.

(big-O, what structure does a compressor reward, etc)
A practical variant

A more viable alternative is the **Minimum Description Length** principle

“the best model is the model that gives the best lossless compression”

There are two ways to motivate MDL
- we’ll discuss both at a high level
- then go into more details on what MDL is and can do
Two-Part MDL

The Minimum Description Length (MDL) principle given a set of hypotheses \mathcal{H}, the best hypothesis $H \in \mathcal{H}$ for given data D is that H that minimises

$$L(H) + L(D \mid H)$$

in which

$L(H)$ is the length, in bits, of the description of H

$L(D \mid H)$ is the length, in bits, of the description of the data when encoded using H

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007)
Bayesian Learning

Bayes tells us that

$$\Pr(H \mid D) = \frac{\Pr(D \mid H) \times \Pr(H)}{\Pr(D)}$$

This means we want the H that maximises $\Pr(H \mid D)$. Since $\Pr(D)$ is the same for all models, we have to maximise $\Pr(D \mid H) \times \Pr(H)$.

Or, equivalently, minimise

$$-\log(\Pr(H)) - \log(\Pr(D \mid H))$$
From Bayes to MDL

So, Bayesian Learning means \textbf{minimising}

\[- \log(\Pr(H)) - \log(\Pr(D \mid H))\]

Shannon tells us that the \(-\log\) transform takes us from probabilities to \textbf{optimal prefix-code lengths}

This means we are actually minimizing

\[L(H) + L(D \mid H)\]

for some encoding \(L\) for \(H\) resp. \(D \mid H\) corresponding to distribution \(\Pr\)
If we want to do MDL this way – i.e., being a Bayesian – we need to specify

- a prior probability $Pr(M)$ on the models, and
- a conditional probability $Pr(D|M)$ on data given a model

What are reasonable choices?
What Distribution to Use?

For the data, this is ‘easy’: a maximum likelihood model

- a maximum entropy model for \(\Pr(D \mid M) \) makes most sense

For the models, this is ‘harder’, we could, e.g., use

- ‘whatever the expert says is a good distribution’, or
- an uninformative prior on \(M \), or
- (a derivative of) the universal prior from algorithmic statistics

These are not easy to compute, query, and ad hoc.

In MDL we say, if we are going to be ad hoc, let us do so **openly** and use **explicit universal encodings**
Information Criteria

MDL might make you think of either

Akaike’s Information Criterion (AIC)

\[k - \ln(\Pr(D|H)) \]

or the **Bayesian Information Criterion** (BIC)

\[\frac{k}{2} \ln(n) - \ln(\Pr(D|H)) \]
Information Criteria

MDL might make you think of either

Akaike’s Information Criterion (AIC)

\[k - L(D|H) \]

or the **Bayesian Information Criterion (BIC)**

\[\frac{k}{2} \ln(n) - L(D|H) \]
Information Criteria

MDL might make you think of either

Akaike’s Information Criterion (AIC)

\[L_{AIC}(H) = k \]

or the **Bayesian Information Criterion (BIC)**

\[L_{BIC}(H) = \frac{k}{2} \ln(n) \]

We, however, do not assume that all parameters are created equal, we take their complexity into account
From Kolmogorov to MDL

Both Kolmogorov complexity and MDL are based on compression. Is there a relationship between the two?

Yes.

We can derive two-part MDL from Kolmogorov complexity. We’ll sketch here how.

(see, e.g., Li & Vitanyi 1996, Vereshchagin & Vitanyi 2004 for details)
Objects and Sets

Recall that in Algorithmic Information Theory we are looking for (optimal) descriptions of objects.

One way to describe an object is
- describe a set of which it is a member
- point out which of these members it is.

In fact, we do this all the time
- the beach (i.e., the set of all beaches)
- over there (pointing out a specific one)
Algorithmic Statistics

We have, a set S

- which we call a **model**
- which has complexity $K(S)$

and an object $x \in S$

- S is a model of x
- the complexity of pointing out x in S is the complexity of x given S, i.e. $K(x \mid S)$

Obviously,

$$K(x) \leq K(S) + K(x \mid S)$$
Algorithmic Information Theory states that

- every program that outputs x and halts encodes the information in x
- the smallest such program encodes only the information in x

If x is a data set, i.e. a random sample, we expect it has

- epistemic structure, “true” structure; captured by S
- aleatoric structure, “accidental” structure; captured by $x \mid S$

We are hence interested in that model S that minimizes

$$K(S) + K(x \mid S)$$

which is surprisingly akin to two-part MDL
For $K(S)$
- this is simply the length of the shortest program that outputs S and halts; i.e., a generative model of x

For $K(x \mid S)$
- if x is a typical element of S
 there is no more efficient way to find x in S than by an index, i.e.,
 $$K(x \mid S) \approx \log(|S|)$$
Kolmogorov’s Structure Function

This suggests a way to discover the best model.

Kolmogorov’s structure function is defined as

\[
 h_x(i) = \min_S \{ \log(|S|) \mid x \in S, K(S) \leq i \}
\]

That is, we start with very simple – in terms of complexity – models and gradually work our way up (see, e.g., Li & Vitanyi 1996, Vereshchagin & Vitanyi 2004).
The MDL function

This suggests a way to discover the best model.

Kolmogorov’s structure function is defined as

$$h_x(i) = \min_S \{ \log(|S|) \mid x \in S, K(S) \leq i \}$$

which defines the MDL function as

$$\lambda_x(i) = \min_S \{ K(S) + \log(|S|) \mid x \in S, K(S) \leq i \}$$

We try to find the minimum by considering increasingly complex models.

(see Vereshchagin & Vitanyi 2004)
The MDL function

This suggests a way to discover the best model.

Kolmogorov’s structure function is defined as

$$h_x(i) = \min_S \{\log(|S|) \mid x \in S, K(S) \leq i\}$$

which defines the MDL function as

$$\lambda_x(i) = \min_S \{K(S) + \log(|S|) \mid x \in S, K(S) \leq i\}$$

We try to find the minimum by considering increasingly complex models.

(see Vereshchagin & Vitanyi 2004)
Two-Part MDL

The Minimum Description Length (MDL) principle

given a set of hypotheses \mathcal{H}, the best hypothesis $H \in \mathcal{H}$
for given data D is that H that minimises

$$L(H) + L(D \mid H)$$

in which

$L(H)$ is the length, in bits, of the description of H

$L(D \mid H)$ is the length, in bits, of the description of the data when encoded using H

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007)
Example Binomial

Say we have a string
\[x = 01011100001101010011 \]
of 10 zeroes and 10 ones

Suppose \(\mathcal{H} \) consists of these binomials, e.g.
\[p_1 = 0.1, \ p_2 = 0.2, \ p_3 = 0.5 \]

\[
L(x \mid p_1) = -10 \log p_1 - 10 \log(1 - p_1) = 34.7 \text{ bits}
\]
\[
L(x \mid p_2) = -10 \log p_2 - 10 \log(1 - p_2) = 26.4 \text{ bits}
\]
\[
L(x \mid p_3) = -10 \log p_3 - 10 \log(1 - p_3) = 20.0 \text{ bits}
\]
Example Binomial

Suppose $x = 01011100001101010011$, and $\mathcal{H} = \{p_1 = 0.1, p_2 = 0.2, p_3 = 0.5\}$

Without prior preference over $H \in \mathcal{H}$

$L(H) = \log |\mathcal{H}|$

$L(p_1) + L(x \mid p_1) = 36.3 \text{ bits}$
$L(p_2) + L(x \mid p_2) = 28.0 \text{ bits}$
$L(p_3) + L(x \mid p_3) = 21.6 \text{ bits}$
Example Binomial

Suppose $x = 01011100001101010011$, and $\mathcal{H} = \{p_1 = 0.1, p_2 = 0.2, p_3 = 0.5\}$

$$L(p_1) + L(x \mid p_1) = 36.3 \text{ bits}$$
$$L(p_2) + L(x \mid p_2) = 28.0 \text{ bits}$$
$$L(p_3) + L(x \mid p_3) = 21.6 \text{ bits}$$

However, when you receive $L(p_1)$ you know that p_2 and p_3 were disregarded by the sender as these did not lead to a minimal description.
Example Binomial

Suppose $x = 01011100001101010011$, and $\mathcal{H} = \{p_1 = 0.1, p_2 = 0.2, p_3 = 0.5\}$

\begin{align*}
L(p_1) + L(x \mid p_1) &= 36.3 \text{ bits} \\
L(p_2) + L(x \mid p_2) &= 28.0 \text{ bits} \\
L(p_3) + L(x \mid p_3) &= 21.6 \text{ bits}
\end{align*}

Models $H \in \mathcal{H}$ will \textbf{only be used} for data where they are \textbf{optimal} within the model class! Two-part MDL ignores this, it wastes bits!
Crude MDL

The Minimum Description Length (MDL) principle

given a set of hypotheses \mathcal{H}, the best hypothesis $H \in \mathcal{H}$ for given data D is that H that minimises

$$L(H) + L(D \mid H)$$

in which

$L(H)$ is the length, in bits, of the description of H

$L(D \mid H)$ is the length, in bits, of the description of the data when encoded using H

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007)
Refined MDL

The main intuition, coming from crude MDL: $L(H)$ is ad hoc, so we want to get rid of it, but keeping only $L(D \mid H)$ is going to give us a bad time, as maximising likelihood leads to overfitting.

$$L(D \mid \mathcal{H}) = L(D \mid H^*) + \text{COMP}(\mathcal{H})$$

aka the **stochastic complexity** of D given \mathcal{H}

Easy! Ehm...
Universal Codes

What Universal codes do we know?

- the two-part code (iff minimax guarantees, or large sample)
- prequential plug-in codes
- Bayesian mixtures codes (Jeffrey’s prior)
- Normalised Maximum Likelihood (NML)

Each of these have quite a different nature, hence different coding schemes, but all lead to very similar $L(D \mid \mathcal{H})$.
Normalized Maximum Likelihood (Shtarkov, 1987)

\[L(D \mid \mathcal{H}) = -\log \frac{P(D \mid H^* \in \mathcal{H})}{\sum_{D' \in \mathcal{D}} P(D' \mid H' \in \mathcal{H})} \]

Interpretation:
The more special \(D \) is with respect to \(\mathcal{H} \), the shorter its code.

One nasty detail, the normalization:
Enumerating every possible \(D' \) requires many PhD students, calculating the maximum likelihood \(H' \) for every \(D' \), even more so.
Crude in Practice

Refined MDL is **only** defined for a small set of cases. Computing stochastic complexity is possible for *even fewer*.

Hence, in practice, as much as we may dislike it in theory, we often have to resort to crude MDL.

However, as long as we’re **aware of the biases** of the encoding, that’s **not a bad thing**.

In fact, as in two-part MDL we can steer our encoding towards models we (intuitively) like better, and hence for data mining purposes two-part MDL is a very often a good friend indeed.
MDL is a principle

MDL is **not** a single method

- it’s a **general principle** for doing inductive inference

The main adage: **fewer bits is better**

- encode the data **universally**
 - that is, without external input, only consider the data at hand
- ideally, uphold minimax optimality properties, try to make sure your encoding is never much worse than the best

Try to avoid, as much as possible, ad hoc biases

- **be explicit** about those that exist