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ABSTRACT
Continual rise in cyber attacks against enterprises indicates
that traditional signature-based approaches for attack de-
tection are insufficient. It is important to develop effective
signature-less data-mining approaches for detecting attacks
in enterprise networks. We apply Support Vector Data De-
scription (SVDD), a single-class classification technique, for
attack detection. On an enterprise network data set, we
show that a single SVDD model can lead to a large number
of false alarms when the training data set contains multi-
ple disjoint clusters. To address this issue, we propose a
novel attack detection approach that combines clustering
with SVDD for attack detection. We demonstrate the prob-
lem and the effectiveness of our approach in reducing the
false alarms on a toy data set. Further, we present an ex-
tensive evaluation of our approach on a real-world enterprise
network data set. Our approach includes an efficient way of
tuning the SVDD model hyperparameter and uses a fast
training algorithm. This enables our method to be prac-
tically usable in the enterprise settings that demand fast
processing speed and automation.
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1. INTRODUCTION
Cyber attacks on enterprises (businesses and government

agencies) continue to rise. The attackers aggressively find
new vulnerabilities in the devices that run on an enterprise
network and exploit them as zero-day attacks. Traditional
signature-based approaches for attack detection are ineffec-
tive against such newly crafted attacks. In contrast, data
mining methods for cyber attack detection do not employ
attack signatures, and can effectively detect novel attacks.

The primary intent of cyber attack detection is to clas-
sify activities as either normal or attack. In a typical en-
terprise, data about normal network activity is abundant,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD 2019 Workshop on Learning and Mining for Cybersecurity (LEM-
INCS’19) August 5th, 2019, Anchorage, AK
c© 2019 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

where as attack data does not exist or is extremely limited.
Such data, which is dominant with observations that corre-
spond to a single class such as normal network activity in
this case, is called as the single-class data. Support vector
data description [21] is an established single-class classifica-
tion technique. In this paper, we use SVDD for cyber attack
detection.

An important issue with the data-mining oriented sys-
tems in cybersecurity is the large number of false alarms
(false positives), that is, a large number of normal activi-
ties misclassified as attack activities. Since each attack is
typically investigated by a human analyst, a large number
of false alarms result in high labor costs and wasted human
effort. Further, it reduces the analysts’ trust in the system.

We show that a single SVDD model comprising all of the
enterprise network activities leads to a large number of false
positives. A typical enterprise network contains a variety
of devices, such as servers, laptops, desktops, smart phones,
and security cameras. These devices exhibit widely different
network behaviors. We posit that the large number of false
positives in a single SVDD model is due to the large dif-
ference in the enterprise device behaviors. To address this
issue, we propose a novel approach that employs unsuper-
vised clustering with several SVDD models, corresponding
to each cluster for detecting attacks. In comparison to using
a single SVDD model, our approach significantly reduces the
number of false positives. We evaluate our approach on a
real-world network data set.

Contributions: We propose an approach that combines
unsupervised clustering and SVDD classification for extract-
ing cyber attacks from enterprise network activities. We
present an extensive evaluation of the proposed approach
on a publicly available enterprise network data set. The
evaluation shows that our approach leads to a significant
reduction in the false positive rate.

Organization: Section 2 introduces the SVDD technique
followed by the mathematical formulation and guidelines for
parameter selection in Section 2.1. Section 3 demonstrates
the problem of large number of false alarms on a toy dataset
and introduces our proposed approach. Section 4 describes
our proposed approach that combines unsupervised cluster-
ing with SVDD. Section 5 presents an extensive evaluation
of our approach using a real-world network data set. Sec-
tion 6 presents the related work. Finally, Section 7 discusses
the conclusions and the future work.

2. BACKGROUND
Support vector data description is a machine learning tech-



nique that is used for single-class classification and anomaly
detection. First introduced by Tax and Duin [21], SVDD’s
mathematical formulation is equivalent to one-class support
vector machines (OCSVM), which is the one-class variant
of support vector machines using Gaussian kernel [19]. The
use of SVDD is popular in domains where the majority of
data belongs to a single class, it is multivariate and it is
not possible to make any distributional assumptions about
data, such as the multivariate normal. For example, SVDD
is useful for analyzing sensor readings from reliable equip-
ment where almost all the readings describe the equipment’s
normal state of operation.

In its simplest form, SVDD builds a minimum-radius hy-
persphere around the one-class training data. For a new
observation, its distance from the center of the hypersphere
is computed. If it is more than the radius, the observation
is designated as an outlier. Otherwise, the observation is
an inlier. A more flexible data description can be obtained
using kernel functions. Such description is not circular and
boundary of such data description closely follows the geom-
etry of the data.

Several researchers have proposed using SVDD for multi-
variate process control [20, 1]. Other applications of SVDD
involve machine condition monitoring [24, 26] and image
classification [18].

We use a data set with the normal network activity for de-
veloping a SVDD model. An outlier detected by this SVDD
model is a potential cyber attack.

2.1 Mathematical Formulation of SVDD
This section describes the mathematical formulation of

the SVDD model, how to apply the SVDD model to score
new observations and the guidelines for setting various pa-
rameters. The mathematical formulation follows Tax and
Duin [21] and Kakde et al. [12].

2.1.1 Primal Formulation
As outlined in Section 2, the SVDD model in its sim-

plest form builds a minimum radius hypersphere around the
training data. The SVDD model can be expressed as an
optimization problem. Its objective function is:

minR2 + C

n∑
i=1

ξi (1)

In Equation 1, R is a radius and represents the decision
variable, C = 1

nf
is a penalty constant where n is the number

of observations in the training data and f is a fraction of
expected outliers. The penalty constant controls the tradeoff
between the volume and the errors. The constraints of the
optimization problem are:

‖xi − a‖2 ≤ R2 + ξi, ∀i = 1, . . . , n (2)

ξi ≥ 0, ∀i = 1, . . . , n (3)

In Equations 2 and 3, xi ∈ Rm where m is the number of
variables, i = 1, . . . , n are the observations from the training
data, ξi is a slack for each observation and a is the center of
the hypersphere.

2.1.2 Dual Formulation
The dual formulation of the above optimization problem

employs Lagrange multipliers. The dual objective function

is:

max

n∑
i=1

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) (4)

In Equation 4, αi ∈ R are the Lagrange constants. The
constraints of the dual optimization problem are:

n∑
i=1

αi = 1 (5)

0 ≤ αi ≤ C,∀i = 1, . . . , n (6)

The solution to the above optimization problem consists
of values αi for all observations i = 1 . . . n. An observation
can be designated as an inlier or an outlier based on the
value of αi as shown in Table 1.

Table 1: SVDD Scoring Criteria

Criteria Observation Position∑n
i=1 αixi = a Center

‖xi − a‖ < R→ αi = 0 Inside
‖xi − a‖ = R→ 0 < αi < C Boundary
‖xi − a‖ > R→ αi = C Outside

From Table 1, observe that the center a only depends upon
the observations with αi > 0. Such observations are called
support vectors. We denote the set of support vectors as Ψ.

The above formulation of SVDD computes a circular data
boundary around the training data which can potentially in-
clude a significant amount of space with sparsely distributed
training observations. A model with such a boundary leads
to a large number of false positives. Thus, instead of cir-
cular, a compact bounded outline around the training data
is desirable. A kernel function enables calculation of such a
compact outline.

2.1.3 Flexible Data Description
The SVDD model is made flexible by replacing the inner

product (xi · xj) with a suitable kernel function K(xi, xj).
The boundary of such data description closely follows the
geometry of the training data set. We employ the Gaussian
kernel function from Equation 7.

K(xi, xj) = exp
−‖xi − xj‖2

2s2
(7)

In Equation 7, s is the Gaussian bandwidth parameter.
When using a kernel function, a threshold R2 value is

calculated to score the observations. Equation 8 calculates
the threshold R2.

R2 = K(xk, xk)−2
∑
i

αiK(xi, xk)+
∑
i,j

αiαjK(xi, xj) (8)

In Equation 8, xk is a support vector such that xk ∈ Ψ<C ,
where Ψ<C ⊂ Ψ such that αk < C.

2.1.4 Scoring
In order to score the observations, for each observation z

in the scoring data set, Equation 9 computes the distance
value δ2(z).



δ2(z) = K(z, z)− 2
∑
i

αiK(xi, z) +
∑
i,j

αiαjK(xi, xj) (9)

Observations in the scoring data set with δ2(z) > R2 are
outliers.

2.2 Guidelines for Parameter Selection
Note that the SVDD formulation with Gaussian kernel

function has two parameters: the outlier fraction f and the
Gaussian bandwidth parameter s. We describe the guide-
lines for selecting an appropriate value for the bandwidth
and outlier fraction parameters.

2.2.1 Gaussian Bandwidth Parameter s
If the value of the outlier fraction f is kept constant, the

number of support vectors that the SVDD algorithm identi-
fies is a function of the Gaussian bandwidth parameter s. At
a very low value of s, the number of support vectors is very
high, approaching the number of observations. As the value
of s increases, the number of support vectors decreases. At
lower values of s, the data boundary is extremely wiggly. As
s is increased, the data boundary becomes less wiggly, and
it starts to follow the shape of the data. At higher values of
s, the data boundary starts becoming spherical.

In support vector machines, cross validation is a widely
used technique [9] for selecting the Gaussian bandwidth pa-
rameter. It requires a labeled training data set that contains
both normal and outlier classes. If such a data set is not
available, then cross validation is infeasible. In cybersecu-
rity, labeled data sets are rare. Even when a labeled data set
is available, it generally contains a large number of normal
(non-attack) class observations, but very few or no outlier
(attack) class observations. This makes cross validation in-
feasible.

Unlike cross-validation, unsupervised methods for kernel
bandwidth selection exist that do not require labeled data.
Kakde et al. [12] present the peak criterion method for band-
width selection and demonstrate its superior performance as
compared to other unsupervised methods, such as coefficient
of variation [6], maximum distance [14] and the distance to
the farthest neighbor [25]. However, peak criterion method
requires a grid search of bandwidth values, which is compu-
tationally expensive and also sensitive to the starting values
in the grid search.

Chaudhuri et al. [3] present the mean criterion method
for bandwidth. For a training data set with n observations,
the mean criterion method uses Equation 10 to compute the
bandwidth value.

s =

√
D̄2

ln n−1
δ2

(10)

D̄2 is computed using Equation 11.

D̄2 =

∑
i<j ||xi − xj ||

2(
n
2

) (11)

In Equation 11, xi and xj represent any two observations
in the training data set and δ is the tolerance parameter.

Liao et al. [16] describe a modified mean criterion method,
which is an extension of the mean criterion method. The

modified mean criterion method computes the tolerance pa-
rameter δ of the mean criterion method using Equation 12.

δ = −0.14818008φ4 + 0.284623624φ3 − 0.252853808φ2

+ 0.159059498φ− 0.001381145 (12)

In Equation 12, φ = 1
ln(n−1)

and n is the number of ob-

servations in the training data set. An SVDD model trained
with a modified mean criterion bandwidth is reasonably ac-
curate for many data sets. Although it can be less accurate
than a model that is trained with the peak criterion band-
width, it provides a fast way of computing the bandwidth
value, which is essential in automating any analytical work
flow. We use the modified mean criterion method on our
evaluation of the SVDD for detecting cyber attacks.

2.2.2 Fraction Outlier f
The value of the outlier fraction f inversely relates to the

penalty constant C. Per Equations 5 and 6, a higher value
of f , which translates to a lower value of C, increases the
constraint on αi, and leads to a larger number of support
vectors. Recall that a lower C value decreases the volume
that is enclosed by the SVDD boundary.

A data description obtained using a value of f that is
significantly different from its true value can lead to incorrect
results. A value of f that is more than its true value leads
to a higher misclassification rate because observations are
incorrectly classified as outliers. It also leads to a smaller
value of threshold R2. On the other hand, a value of f that is
less than its true value also leads to a higher misclassification
rate because real outliers are classified as inliers.

In this paper we assume that the training data set that
is used for building the SVDD model has no outliers and
all observations correspond to the normal network activity.
Hence we set the value of outlier fraction f to a very low
value of 1e−6.

3. ANALYSIS ON TOY DATA SET
This section analyzes the problem of the large number of

false positives that occur when applying SVDD, and outlines
our proposed approach.

3.1 Toy data set

Figure 1: Training Data



Figure 1 shows a toy data set that we simulated to mimic
the network activities in an enterprise. It contains two vari-
ables: bytes (representing the amount of data sent by a de-
vice); and hosts (representing the number of distinct desti-
nation hosts with which a device communicates). The toy
data contains three disjoint clusters, which represent three
different kinds of devices: enterprise servers, employee work-
stations, and IoT devices. The clusters contain different
number of devices: 1,000 servers, 10,000 workstations, and
60,000 IoT devices. The proportion of the device counts is
representative of a typical enterprise, and the variable (bytes
and hosts) values in different clusters is representative of the
network activities of the corresponding device types. For ex-
ample, end-user workstations typically have fewer bytes and
hosts compared to the enterprise servers. We intentionally
use the star, oval and a donut shape in the toy data set to
highlight the versatility of the SVDD algorithm to address
differing geometry of constituting clusters in the training
data set. As we see in Section 3.2 and Section 3.3, the
SVDD model is able to capture the shape of different clus-
ters in both the single-model approach and the multi-model
approach.

3.2 Single SVDD Model Approach
We train a single SVDD model on the toy data set. The

model uses a Gaussian bandwidth value that is computed
using the modified mean criterion method and the outlier
fraction value of 1e−6. To evaluate the model quality, we
score a 200 × 200 data grid using the model. Figure 2
shows the scatter plot of the scoring results. The gray area
indicates the observations that are scored as outliers, and the
black area indicates observations that are scored as inliers.

Figure 2: Single-Model Approach: Scoring Results

A comparison between the training data from Figure 1
and the scoring results from Figure 2 indicates that the sin-
gle SVDD model correctly classifies observations that are
outside the training data as outliers. However, notice the
gray cavities in the Servers cluster. An observation that is
part of any of these cavities is misclassified as an outlier.
The observations from all such gray cavities contribute to
the total false positives. Also, note that the gray cavities
are only present in the Servers cluster but not in the other
two clusters. The Servers cluster is the largest among the
three clusters and contains the least number of observations.
This indicates that the false positive rate can be reduced if

one can obtain a data description that is devoid of cavities.
Reduction in cavities can be a challenge if a single band-

width value is used to train an SVDD model for the entire
data set, which has multiple clusters of varying scale and
densities. Hence, in the next approach, we train multiple
SVDD models, one for each cluster in the training data.

3.3 The Multiple SVDD Model Approach
Instead of training a single SVDD model, in this section

we train multiple SVDD models.

Figure 3: Multi-Model Approach: Scoring Results

We employ unsupervised clustering to cluster the toy data
set into three clusters. We now train three SVDD models–
one model per cluster. Similar to the single SVDD model,
these models use Gaussian bandwidth values that are com-
puted using the modified mean criterion method and the
outlier fraction value of 1e−6. We consider an observation
as outlier if it is scored as an outlier by all of the three SVDD
models. We score a 200 × 200 data grid using each of the
model. Figure 3 shows the scatter plot of the scoring results.
In comparison to the single SVDD model results from Fig-
ure 2, the plot contains significantly fewer and smaller gray
holes, that is, significantly fewer false positive.

As outlined in Section 2.2.1 bandwidth value computa-
tions using the modified mean criterion method are based on
distances between observations in the training data. Hence
when data consists of multiple clusters of varying scale and
density, the bandwidth computation involves distances be-
tween observations within and across clusters. Hence data
description obtained using such bandwidth value, may not
accurately capture the geometry of each individual cluster.
Where as, in case of the multi-model approach, bandwidth
for each cluster is based solely on the distances between ob-
servations which are within the specific cluster. Hence data
description obtained using such bandwidth values is more ac-
curate and it closely follows the boundary of individual clus-
ters. Note bandwidth values used in single SVDD model ver-
sus the bandwidth values used in the multiple SVDD model.
In single SVDD model, the bandwidth value of 2.19864 is
smaller than the bandwidth value of 5.75628 used for the
server cluster in case of multiple SVDD model approach.
This explains why the description of workstation cluster in
multi model approach is devoid of any cavities. Similarly, if
one compares the bandwidth values of 0.50044 used for the
IoT device cluster and bandwidth value of 1.0458 used for



employee workstation cluster used in the multi model ap-
proach, against the single model bandwidth of 2.19864, the
lower bandwidth values explain the sharper boundaries for
these two clusters in Figure 3.

4. PROPOSED APPROACH
This section builds on the findings from Section 3 and

presents our proposed approach in detail.
Although an SVDD model using a kernel function com-

putes a compact boundary around the training data, if the
data inherently contains multiple disjoint clusters of signifi-
cantly different density and scale, a single model constructed
with one bandwidth value might lead to false positives in the
sparse and/or larger cluster region.

To address this issue, we propose an approach that em-
ploys clustering prior to using SVDD for outlier detection.
Figure 4 shows our proposed approach. In this approach,
a separate SVDD model is fitted for each cluster. A band-
width value that is computed for each cluster using the mod-
ified mean criterion takes the scale of the data in that cluster
into account. Hence, it is expected to provide a better, more
compact description, with fewer cavities. Next, we describe
the steps of our approach.
• First, our approach standardizes the training data set.

For each feature, we compute the mean and standard
deviation. The standardized value is computed by sub-
tracting the mean from the feature value and dividing
the result by the standard deviation. This effectively
shifts each feature’s mean to zero and standard devi-
ation to one. The standardization is necessary if the
features have significantly different scales.
• Second, our approach clusters the training data set us-

ing an unsupervised clustering algorithm such as KMeans
or DBScan. If the number of clusters in the data set is
unknown, we compute the optimal number of clusters
using existing approaches such as ABC criterion [22].
• Third, our approach trains one SVDD model per train-

ing data set cluster. The bandwidth for the SVDD
model is computed using an existing methods such as
mean criterion or the modified mean.
• Fourth, for scoring new activities, our approach first

standardizes the scoring data set. The standardiza-
tion uses means and standard deviations of the features
that are computed during the first step. The approach
then scores the data set using the SVDD model of each
cluster. An observation is considered an outlier if it is
scored as an outlier by all of the SVDD models.

5. EVALUATION
This section presents an extensive evaluation of our pro-

posed approach on a publicly available network data set.

5.1 Data Set
Our evaluation uses a network data set named CTU-13

[7] that was captured at Czech Technical University. The
data set contains a mixture of normal network traffic and
botnet traffic, and it is labeled. It includes traffic captured
from running various botnets such as Neris, Rbot, Virut,
and Menti. The traffic data is in the NetFlow format [10].
We now describe the variables in the data set.

Start time: the time at which the first packet is sent in the
NetFlow

Duration: the time between the first and the last packet
in the NetFlow

Protocol: the Internet Protocol (IP) such as TCP, UDP,
ICMP and ARP in the NetFlow

Source and destination address: the IP addresses of the
source and destination devices in the NetFlow

Source and destination port: the ports used by the source
and destination devices in the NetFlow

Direction: the direction of network traffic in the NetFlow:
unidirectional (from source to destination or from des-
tination to source); or bidirectional

State: the set of TCP flags such SYN, ACK, FIN, etc. of
the sender and the receiver in the NetFlow

Source and destination type of service: the type of ser-
vice on the packets that are sent by the source and
destination devices in the NetFlow

Total packets: the total number of packets in the NetFlow

Total bytes: the total number of bytes that are sent by
both the source and destination devices in the NetFlow

Source bytes: the bytes sent only by the source device in
the NetFlow

Label: the ground-truth type (normal, background, or botnet-
related) of the NetFlow

In this paper, we refer to all NetFlows labeled as normal or
background as normal flows or non-attack flows and those
labeled as botnet-related as botflows or attack flows. We
focus the evaluation on the TCP, UDP and ICMP protocol
flows because all of the botnets use one of these protocols.
Table 2 shows the counts of the normal flows and botflows
in the CTU-13 data set that use the TCP, UDP, or ICMP
protocols.

Table 2: Flow Counts in the CTU-13 data set

Type Count Percent

Normal Flows 19,455,505 98%
Botnet Flows 444,699 2%

Total Flows 19,900,204

5.2 Features
NetFlow aggregates network traffic between a pair of source

and destination devices. However, a typical cyber attack in-
volves network activity between more than one pair of de-
vices. For example, consider a device that is infected with
malware that performs a host scan on a subnet. Such activ-
ity creates multiple NetFlows with the source IP and port
of the infected device and destination IPs and ports of the
scanned hosts. Therefore, instead of classifying an individ-
ual NetFlow that is sent by a source device as attack or
non-attack, we aggregate the NetFlows that originate from
each source over a time window and classify the aggregated
traffic as normal activity or attack activity. The evaluation
employs a fixed hour-of-day time window for aggregating the
NetFlows that originate from each source IP address. We



Figure 4: Approach

leave the study of the impact of different time windows on
the model accuracy as a future work.

Next, we describe the features we extract from the aggre-
gated data.

Destination hosts: the number of distinct destination de-
vice IP addresses. A high value of destination hosts is
indicative of the source device performing a host scan.

Maximum destination ports: the maximum number of
ports on any of the destination IP addresses. A high value
of maximum destination ports is indicative of the source
device performing a port scan.

DNS events: the number of flows with DNS destination
port (53). A high value of DNS events is indicative of the
source device attempting to use the DNS protocol for data
exfiltration.

SSH scanning: the number of distinct destination IPs with
destination port SSH (22). A high value of SSH scanning is
indicative of the source device performing a scan to locate
SSH servers.

Telnet scanning: the number of distinct destination IPs
with destination port Telnet (23). A high value of Telnet
scanning is indicative of the source device performing a
scan to locate Telnet servers.

FTP scanning: the number of distinct destination IPs with
destination port FTP (21). A high value of FTP scanning
is indicative of the source device performing a scan to lo-
cate FTP servers.

Database scanning: the number of distinct destination IPs
with a destination port of typical databases such as MySQL
(3306) or Oracle (1521). A high value of database scan-
ning is indicative of the source device performing a scan
to locate database servers.

Application server scanning: the number of distinct des-
tination IPs with a destination port of typical web applica-
tion servers (80, 443). A high value of application server
scanning is indicative of the source device performing a
scan to locate application servers.

Domain controller scanning: the number of distinct des-
tination IPs with a domain controller destination port. A
high value of domain controller scanning is indicative of
the source device performing a scan to locate domain con-
trollers.

Domain controller events: the number of flows with a
domain controller destination port. A high value of do-
main controller events is indicative of the source device
attempting to access and extract data from domain con-
trollers.

ICMP scanning: the number of destination IPs in which
the protocol is ICMP. A high value of ICMP scanning is
indicative of the source device performing a scan to locate
hosts that are up.

UDP packets: the total number of packets in which the
protocol is UDP. A high value of UDP packets is indicative
of the source device performing anomalous activity using
the UDP protocol.

Bytes: the total number of bytes that are sent and received.
A high value of bytes is indicative of the source device
attempting to exfiltrate data.

Flow duration: the sum, mean and standard deviation of
the flow durations. The attack flows can have different
sum, mean and standard deviations of the flow durations
as compared to the normal flows.

Sender states: several features one per distinct sender con-
nection state in terms of the TCP flags set in the NetFlow.
The TCP flags include: synchronize (S), acknowledge (A),
finish (F), urgent (U), push (P), and reset (R) [5]. The fea-
ture value is the count of flows with the given sender state
value. For example, sender FSPA feature is the count of
flows in which the sender state is FSPA. The attack flows
can have different sender states as compared to the normal
flows.

Receiver states: several features one per distinct receiver
connection state. The feature value is the count of flows
having the given receiver state value. For example, re-
ceiver SRA feature is the count of flows where the receiver
state is SRA. The attack flows can have different receiver
states as compared to the normal flow.

In addition to the above features, we compute the total
number of botflows for each source device and each hour of
day. The presence of a botflow implies that the source device
is infected by malware and is being used for a cyber attack.
We refer to the data set with the features as ctu features.
The ctu features data set contains an observation for each
source device and each hour of the day. It has 2,031,488
source devices and NetFlows that span 10 days.



Note that we only present a core set of features, which
is not exhaustive. Our set of features can guide the design
of additional features. For example, some Cyber attacks
employ DNS protocol for for data exfiltration. A feature
that computes the sum of bytes sent by a device over the
DNS protocol can be effective in detecting such an attack.

5.3 The Single-SVDD Model
This section describes the details of the single-SVDD model

and its results.
To create a training data set, we split ctu features into

two data sets: ctu bot and ctu norm. ctu bot con-
tains those observations for which the number of botflows
is greater than zero, and ctu norm contains the rest of
the observations which are normal. ctu norm is further
split into two data sets: ctu norm train and ctu test,
containing 80% and 20% of the observations, respectively.
We then combine ctu bot and ctu norm train to create
ctu train data set.

Table 3: Performance Results of the Single-SVDD Model

Botflows TP FP TN FN TPR FPR FP/TP

1 164 36110 887518 39 0.808 0.039 220.18
2 164 36110 887531 26 0.863 0.039 220.18
3 164 36110 887537 20 0.891 0.039 220.18
4 163 36111 887538 19 0.896 0.039 221.54
5 163 36111 887554 3 0.982 0.039 221.54
6 156 36118 887555 2 0.987 0.039 231.53
7 156 36118 887555 2 0.987 0.039 231.53
8 146 36128 887555 2 0.986 0.039 247.45
9 146 36128 887557 0 1.0 0.039 247.45
10 146 36128 887557 0 1.0 0.039 247.45

We employ the SVDD procedure that is available in the
SASR© Visual Data Mining and Machine Learning 8.3 [11].
We use the modified mean criterion method for bandwidth
calculation, and the stochastic subset solver [2] that the SAS
SVDD procedure provides. Stochastic subset solver is an
iterative method for SVDD training that uses sampling. It
trains an SVDD model on each sample and incrementally
develops data description for the training data. Stochastic
subset solver provides a fast approximate description of the
training data.

Table 3 shows the performance results for the single-SVDD
model. The Botflows column shows a threshold value above
which we consider the aggregated activity of a source device
as an attack. Recall that a botflow is a NetFlow that is
labeled as botnet-related. We now describe the columns of
Table 3.

• True positive (TP): the number of device activities cor-
rectly classified as attack

• False positive (FP): the number of device activities
incorrectly classified as attack

• True negative (TN): the number of device activities
correctly classified as normal

• False negative (FN): the number of device activities
incorrectly classified as normal

• True positive rate (TPR): the ratio TP/(TP + FN)

• False positive rate (FPR): the ratio FP/(FP + TN)

Note that the number of device activities that are con-
sidered as attack reduces with the increase in the botflows
threshold value. For example, consider the first row from
Table 3 with botflows threshold of 1. In this case, a de-
vice activity is considered an attack if the number of bot-
flows in that device activity is greater than or equal to
1. The total number of such attack device activities is:
TP+FN = 164+39 = 203. In the second row with botflows
threshold of 2, the total number of attack device activities is:
TP+FN = 164+26 = 190. The difference 203−190 = 13 is
the number of device activities with exactly 1 botflow, and
are not considered as attack activities in the second row.

As Table 3 shows, the true positive rate increases with
the botflows threshold. This is because the signal in the
data increases with the number of botflows, and therefore
the model’s ability to correctly classify a device’s activity as
attack increases. The model correctly classifies all devices’
activities in which the device sends nine or more botflows as
attack.

Although the FPR in Table 3 is small (0.039), the number
of false positives per true positive (FP/TP) is quite large
(between 220–247). This is due to the issue discussed in
Section 3. In the next section, we employ the proposed
method from Section 4 on the data set.

5.4 The Multiple-SVDD Model Approach
Our evaluation employs KMeans clustering to cluster the

ctu norm data set. In order to study the effect of clus-
ter count on the results, we repeatedly apply the proposed
method with cluster counts in the range 2–5. We train an
SVDD model per cluster. Similar to the single-SVDD model,
we use modified mean criterion method for bandwidth selec-
tion, and the stochastic subset solver. We score ctu test
using each of the cluster SVDD models. An observation is
considered an outlier, that is, an attack, if the observation
is an outlier per all of the cluster SVDD models. Otherwise,
the observation is considered an inlier, that is, a non-attack.

As Table 4 shows, the FP/TP ratio decreases up to three
clusters, and from four clusters onward it increases. Al-
though the FP/TP ratio is minimum at three clusters, the
true positive rate is lower compared to the other cases. As
Table 3 shows, in case of single-SVDD model, at the bot-
flows threshold of 9 the FP/TP ratio is 247, and the true
positive rate is 1. From Table 4(a), at the botflows threshold
of 9, the FP/TP ratio for the two-cluster case is 81, and the
true positive rate is 0.99. As compared to the single-SVDD
model, the FP/TP ratio is significantly smaller in the two-
cluster case and the true positive rate is about the same.
This shows that our approach leads to a significant reduc-
tion in false positives with a minimal impact on the true
positive rate. Observe that the two-cluster case has 1 false
negative whereas the single-SVDD model has 0 false nega-
tives. The false negative can be addressed by increasing the
botflows threshold from 9 to 10.

The optimal number of clusters using ABC criterion for
the ctu norm dataset is 3. For cluster count of 3 and at
the botflows threshold of 9, Table 4(b) shows that the true
positive rate is 0.68, the number of false negatives is 47,
and the FP/TP ratio is 17.99. Although the FP/TP ratio
is smallest for the cluster count of 3, the false negatives are
relatively higher. Therefore, instead of using the optimal
cluster count, we suggest applying our approach with dif-
ferent cluster counts that are close to the optimal cluster



Botflows TP FP TN FN TPR FPR FP/TP

1 152 11759 911868 51 0.749 0.013 77.36
2 152 11759 911881 38 0.800 0.013 77.36
3 152 11759 911887 32 0.826 0.013 77.36
4 152 11759 911889 30 0.835 0.013 77.36
5 152 11759 911905 14 0.916 0.013 77.36
6 145 11766 911906 13 0.918 0.013 81.14
7 145 11766 911906 13 0.918 0.013 81.14
8 145 11766 911916 3 0.980 0.013 81.14
9 145 11766 911918 1 0.993 0.013 81.14

(a) Two Clusters

Botflows TP FP TN FN TPR FPR FP/TP

1 99 1781 921846 104 0.488 0.002 17.99
2 99 1781 921859 91 0.521 0.002 17.99
3 99 1781 921865 85 0.538 0.002 17.99
4 99 1781 921867 83 0.544 0.002 17.99
5 99 1781 921883 67 0.596 0.002 17.99
6 99 1781 921891 59 0.627 0.002 17.99
7 99 1781 921891 59 0.627 0.002 17.99
8 99 1781 921901 49 0.669 0.002 17.99
9 99 1781 921903 47 0.678 0.002 17.99

(b) Three Clusters

Botflows TP FP TN FN TPR FPR FP/TP

1 140 3731 919896 63 0.690 0.004 26.65
2 140 3731 919909 50 0.737 0.004 26.65
3 140 3731 919915 44 0.761 0.004 26.65
4 140 3731 919917 42 0.769 0.004 26.65
5 140 3731 919933 26 0.843 0.004 26.65
6 133 3738 919934 25 0.842 0.004 28.11
7 133 3738 919934 25 0.842 0.004 28.11
8 133 3738 919944 15 0.899 0.004 28.11
9 133 3738 919946 13 0.911 0.004 28.11

(c) Four Clusters

Botflows TP FP TN FN TPR FPR FP/TP

1 158 48154 875473 45 0.778 0.052 304.77
2 158 48154 875486 32 0.832 0.052 304.77
3 158 48154 875492 26 0.859 0.052 304.77
4 157 48155 875493 25 0.863 0.052 306.72
5 156 48156 875508 10 0.940 0.052 308.69
6 148 48164 875508 10 0.937 0.052 325.43
7 148 48164 875508 10 0.937 0.052 325.43
8 148 48164 875518 0 1.000 0.052 325.43
9 146 48166 875518 0 1.000 0.052 329.90

(d) Five Clusters

Table 4: Performance Results of SVDD Models

count, and selecting a cluster count that provides desired
overall results in terms of: true positive rate, false negative
count, and FP/TP ratio.

To further study the effect of cluster count, we extended
the evaluation to cluster counts in range 6–10. As the cluster
count is increased, the number of false positives increases
but the true positive rate and false negative counts remain
about the same as the five-cluster case.

6. RELATED WORK
Kenza et al. [13] show that a single SVDD model trained

on data with disjoint clusters leads to a large number of false
negatives (attack observations classified as normal). To ad-
dress this problem, similar to our approach, they propose a
hybrid SVDD and clustering approach in which they train a
separate SVDD model for each cluster. Unlike Kenza et al.,
we show that a single-SVDD model, which is trained us-
ing an appropriate bandwidth can correctly model the data
that contain multiple disjoint clusters, and it does not pro-
duce a large number of false negatives. In this paper we
used modified mean criterion method for bandwidth selec-
tion, but other bandwidth selection methods based on the
peak [12], mean [3] or the trace [4] criterion are equally ca-
pable of identifying the clusters. Section 3.2 demonstrates
this result on the toy data set using the single-SVDD model.
Further, the performance results for the single-SVDD model
from Table 3 show that clustering is not needed for reducing
the false negatives. A single-SVDD model is able to identify
a majority of the attacks. We propose combining cluster-
ing with SVDD to reduce the number of false positives (the
normal observations classified as attacks).

Görnitz et al. [8] propose clusterSVDD, a methodology
that combines clustering and SVDD in a single formulation.

The clusterSVDD method is based upon the primal formu-
lation of SVDD as defined in Equation 1, but unlike our
approach it lacks support for flexible data description that
can be obtained using kernel functions. Our approach uses
Gaussian kernel function for flexible data description that
effectively models geometry of the training data.

Maglaras and Jiang [17] employ one-class support vector
machine (OCSVM) to detect attacks on supervisory con-
trol and data acquisition (SCADA) systems. They employ
normal network traffic from SCADA networks for training
the OCSVM model and scoring traffic in real-time using
the OCSVM model. In contrast to Maglaras and Jiang’s
work, we focus on detecting attacks in enterprise networks.
We employ SVDD instead of OCSVM, which can be easily
operationalized. In comparison to enterprise networks, the
traffic in SCADA networks has less variety and variability
leading to relative ease in anomaly detection. Therefore,
techniques that are effective in detecting attacks in SCADA
networks might not be effective in enterprise networks.

Umer et al. [23] evaluate various one-class classification
techniques for extracting attacks from enterprise network
activities. They categorize the techniques into three cat-
egories: density estimation, reconstruction methods, and
boundary methods. The SVDD technique is included in the
boundary methods. Similar to our paper, they employ CTU-
13 data set for evaluation. They find that SVDD is more
effective as compared to all of the other one-class classifica-
tion techniques in detecting attacks. Our work goes beyond
Umer et al.’s work by further improving the performance of
the SVDD technique.

Lakhina et al. [15] employ principal components analysis
(PCA) for detecting network-wide anomalies. PCA trans-
forms data into a set of principal components that are or-



dered on the extent of the variance they explain in the data.
Lakhina et al. separate the network traffic into normal and
anomalous subspaces using PCA. The higher order principal
components represent normal traffic, whereas the lower or-
der components represent anomalous traffic. Unlike Lakhina
et al.’s method, we employ the SVDD technique to construct
a boundary around the normal traffic. Unlike PCA, SVDD
can detect anomalies along any direction, hence it more ef-
fectively models real-world data sets.

7. CONCLUSION
This paper applies the SVDD technique for extracting cy-

ber attacks from enterprise network activities. We show that
a single-SVDD model for attack detection leads to a large
number of false positives, especially when the training data
set contains multiple disjoint clusters of different scale and
density. To address this issue, we propose an approach that
combines clustering with SVDD. We demonstrate the prob-
lem and the effectiveness of our proposed approach on a toy
data set. Finally, we present an extensive evaluation of our
proposed approach on the CTU-13 data set.

Note that although our proposed approach leads to lower
false positives, it requires the additional step of clustering
and associated tuning of the cluster count, which is not re-
quired by the single SVDD model. Our results confirm that
the single-SVDD model has low false negatives (that is, it
identifies a majority of the attacks). Therefore, in cases
where processing capacity and time are limited and higher
number of false positives is not an important issue, a single-
SVDD model will be more appropriate.

Future Work
Our evaluation used a fixed hour-of-day time window for
computing the features. If an attack straddles two consecu-
tive hours, then the features computed using the fixed hour-
of-day window may not be effective in detecting it. In future,
we plan to investigate the impact of a sliding-time window
and windows of different lengths on the effectiveness in at-
tack detection.

In SVDD, all points on a distance value contour are clas-
sified as outliers without regard to the directionality. In
some domains including cybersecurity, the directionality is
relevant. For example, SVDD might classify a device that
sends fewer bytes of data and communicates with fewer des-
tination hosts (compared to the other devices) as an outlier.
However, such activity of the device is not indicative of an
attack. In future, we plan to study a variant of SVDD that
considers directionality.

We also plan to develop an approach for incrementally
updating a pre-trained SVDD model as new training data
becomes available. This is relevant for enterprise settings in
which the training data evolves continuously.
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